In-vitro cellular and in-vivo investigation of ascorbic acid and β-glycerophosphate loaded gelatin/sodium alginate injectable hydrogels for urinary incontinence treatment.
{"title":"In-vitro cellular and in-vivo investigation of ascorbic acid and β-glycerophosphate loaded gelatin/sodium alginate injectable hydrogels for urinary incontinence treatment.","authors":"Hessam Rezaei, Azadeh Asefnejad, Morteza Daliri-Joupari, Sedigheh Joughehdoust","doi":"10.1007/s40204-021-00160-9","DOIUrl":null,"url":null,"abstract":"<p><p>Urinary incontinence is one of the most common disorders especially in adult women. In this study, cellular and in-vivo analyses were performed on (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and CaCl<sub>2</sub> cross-linked alginate and gelatin hydrogels containing β-glycerophosphate and ascorbic acid to evaluate the regenerative potential as injectable compression agents for the treatment of urinary incontinence. The hydrogels were prepared with different percentages of components and were named as GA1 (7.2% w/v gelatin, 6% w/v sodium alginate, 0.5:1w/w GPTMS, CaCl<sub>2</sub> 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate), GA2 (10% w/v gelatin, 8.5% w/v sodium alginate, 0.5:1 w/w GPTMS, CaCl<sub>2</sub> 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate), and GA3 (10% (w/v) gelatin, 8.5% w/v sodium alginate, 1:1 w/w GPTMS, CaCl<sub>2</sub> 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate) hydrogels. The results of cell studies showed that although all three samples supported cell adhesion and survival, the cellular behavior of the GA2 sample was better than the other samples. Animal tests were performed on the optimal GA2 sample, which showed that this hydrogel repaired the misfunction tissue in a rat model within 4 weeks and the molecular layer thickness was reached the normal tissue after this duration. It seems that these hydrogels, especially GA2 sample containing 10% (w/v) gelatin, 8.5% (w/v) sodium alginate, 0.5:1 (w/w) GPTMS, CaCl<sub>2</sub> 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, and 1.5 mg/mL β-glycerophosphate, can act as an injetable hydrogel for urinary incontinence treatment without the need for repeating the injection.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"10 2","pages":"161-171"},"PeriodicalIF":4.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271082/pdf/40204_2021_Article_160.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00160-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Urinary incontinence is one of the most common disorders especially in adult women. In this study, cellular and in-vivo analyses were performed on (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and CaCl2 cross-linked alginate and gelatin hydrogels containing β-glycerophosphate and ascorbic acid to evaluate the regenerative potential as injectable compression agents for the treatment of urinary incontinence. The hydrogels were prepared with different percentages of components and were named as GA1 (7.2% w/v gelatin, 6% w/v sodium alginate, 0.5:1w/w GPTMS, CaCl2 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate), GA2 (10% w/v gelatin, 8.5% w/v sodium alginate, 0.5:1 w/w GPTMS, CaCl2 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate), and GA3 (10% (w/v) gelatin, 8.5% w/v sodium alginate, 1:1 w/w GPTMS, CaCl2 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate) hydrogels. The results of cell studies showed that although all three samples supported cell adhesion and survival, the cellular behavior of the GA2 sample was better than the other samples. Animal tests were performed on the optimal GA2 sample, which showed that this hydrogel repaired the misfunction tissue in a rat model within 4 weeks and the molecular layer thickness was reached the normal tissue after this duration. It seems that these hydrogels, especially GA2 sample containing 10% (w/v) gelatin, 8.5% (w/v) sodium alginate, 0.5:1 (w/w) GPTMS, CaCl2 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, and 1.5 mg/mL β-glycerophosphate, can act as an injetable hydrogel for urinary incontinence treatment without the need for repeating the injection.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.