Progress in Biomaterials最新文献

筛选
英文 中文
PEGylated curcumin-loaded nanofibrous mats with controlled burst release through bead knot-on-spring design. 聚乙二醇姜黄素负载的纳米纤维垫与控制爆发释放通过头结弹簧设计。
IF 4.9 3区 医学
Progress in Biomaterials Pub Date : 2020-12-01 Epub Date: 2020-10-18 DOI: 10.1007/s40204-020-00140-5
Mahdi Saeed, Hamid Mirzadeh, Mojgan Zandi, Jalal Barzin
{"title":"PEGylated curcumin-loaded nanofibrous mats with controlled burst release through bead knot-on-spring design.","authors":"Mahdi Saeed,&nbsp;Hamid Mirzadeh,&nbsp;Mojgan Zandi,&nbsp;Jalal Barzin","doi":"10.1007/s40204-020-00140-5","DOIUrl":"https://doi.org/10.1007/s40204-020-00140-5","url":null,"abstract":"<p><p>APEGylatedcurcumin (PCU) loaded electrospuns based on poly(ε-caprolactone) (PCL) andpolyvinyl alcohol (PVA) were fabricated for wound dressing applications. The main reason for this wound dressing design is antibacterialactivity enhancement, and wound exudates management. PEGylation increases curcuminsantibacterial properties and PVA can help exudates management. For optimal wound dressing, first, response surface methodology (RSM) was applied to optimize the electrospinning parameters to achieve appropriate nanofibrous mats. Then a three-layer electrospun was designed by considering the water absorbability, PCU release profile as well as antibacterial and biocompatibility of the final wound dressing. The burst release in controlled release systems could be evaluated for prevention of the higher initial drug release and control the effective life time. The PCU release results illustrated that the bead knot plays a positive role in controlling the release profile andby increase in the number of beads per unit area from 3000 to 9000 mm<sup>-2</sup>,the PCU burst release will be reduced; Also in vitro studies show that optimized three-layer dressing based on PCL/PVA/PCU can support water vapour transmission rate in optimal range and also absorb more than three times exudates in comparison with mono-layerdressing. Antibacterial tests show that the electrospun wound dressing containing 5% PCU exhibits100% antibacterial activityas well as cell viability level within an acceptable range.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"9 4","pages":"175-185"},"PeriodicalIF":4.9,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-020-00140-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38501753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM. 原子力显微镜研究壳聚糖水凝胶的纳米力学性能。
IF 4.9 3区 医学
Progress in Biomaterials Pub Date : 2020-12-01 Epub Date: 2020-11-06 DOI: 10.1007/s40204-020-00141-4
A Ben Bouali, A Montembault, L David, Y Von Boxberg, M Viallon, B Hamdi, F Nothias, R Fodil, S Féréol
{"title":"Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM.","authors":"A Ben Bouali,&nbsp;A Montembault,&nbsp;L David,&nbsp;Y Von Boxberg,&nbsp;M Viallon,&nbsp;B Hamdi,&nbsp;F Nothias,&nbsp;R Fodil,&nbsp;S Féréol","doi":"10.1007/s40204-020-00141-4","DOIUrl":"https://doi.org/10.1007/s40204-020-00141-4","url":null,"abstract":"<p><p>In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with glycosaminoglycans), and tunable mechanical properties. Optimizing the design of these biomaterials requires fine knowledge of its physical characteristics prior to assessment of the cell-biomaterial interactions. In this work, using atomic force microscopy (AFM), we report a characterization of mechanical and topographical properties at the submicron range of chitosan hydrogels, depending on physico-chemical parameters such as their polymer concentration (1.5%, 2.5% and 3.5%), their degree of acetylation (4% and 38.5%), and the conditions of the gelation process. Well-known polyacrylamide gels were used to validate the methodology approach for the determination and analysis of elastic modulus (i.e., Young's modulus) distribution at the gel surface. We present elastic modulus distribution and topographical and stiffness maps for different chitosan hydrogels. For each chitosan hydrogel formulation, AFM analyses reveal a specific asymmetric elastic modulus distribution that constitutes a useful hallmark for chitosan hydrogel characterization. Our results regarding the local mechanical properties and the topography of chitosan hydrogels initiate new possibilities for an interpretation of the behavior of cells in contact with such soft materials.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"9 4","pages":"187-201"},"PeriodicalIF":4.9,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-020-00141-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38573676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Preparation and characterization of polyethylene terephthalate-chamomile oil blends with enhanced hydrophilicity and anticoagulant properties. 具有增强亲水性和抗凝性能的聚对苯二甲酸乙二醇酯-洋甘菊油共混物的制备和表征。
IF 4.9 3区 医学
Progress in Biomaterials Pub Date : 2020-09-01 Epub Date: 2020-06-21 DOI: 10.1007/s40204-020-00133-4
Maie A Fadel, Nagwa A Kamel, Mirhane M Darwish, Salwa L Abd El-Messieh, Kamal N Abd-El-Nour, Wafaa A Khalil
{"title":"Preparation and characterization of polyethylene terephthalate-chamomile oil blends with enhanced hydrophilicity and anticoagulant properties.","authors":"Maie A Fadel,&nbsp;Nagwa A Kamel,&nbsp;Mirhane M Darwish,&nbsp;Salwa L Abd El-Messieh,&nbsp;Kamal N Abd-El-Nour,&nbsp;Wafaa A Khalil","doi":"10.1007/s40204-020-00133-4","DOIUrl":"https://doi.org/10.1007/s40204-020-00133-4","url":null,"abstract":"<p><p>New blend films based on polyethylene terephthalate (PET) with different concentrations (50, 100 and 200 µL) of chamomile oil (CAO) were prepared. The effect of oil on the dielectric properties, structural and surface properties of PET was studied. The wettability of the blend films was evaluated by contact angle measurements. In vitro platelet adhesion on the surface and coagulation assessment were conducted to evaluate the behavior of the new blends for blood contact applications. Results of the study indicate that the wettability of PET-CAO blends up to 100 µL has been enhanced relative to the pure PET as indicated by the decrease in contact angle measurements. The attenuation total reflection-Fourier transform infrared spectra of the blends confirmed the presence of chamomile oil in the polymer matrix and suggested the presence of interaction between them. The permittivity ε' values decreased by increasing oil content upto 100 µL. On the other hand, the values of dielectric loss ε″ were found to increase by increasing oil content to 100 µL after which it decreased. The delay in partial thromboplastin time (PTT) of the blood would validate the anti-coagulant property of PET-CAO blends. The results demonstrated that the PET-CAO blends with concentration of 100 µL could be considered as a promising candidate material in blood contact application.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"9 3","pages":"97-106"},"PeriodicalIF":4.9,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-020-00133-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38068919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Hydrogel scaffolds with elasticity-mimicking embryonic substrates promote cardiac cellular network formation. 具有模拟胚胎基质弹性的水凝胶支架可促进心脏细胞网络的形成。
IF 4.4 3区 医学
Progress in Biomaterials Pub Date : 2020-09-01 Epub Date: 2020-09-25 DOI: 10.1007/s40204-020-00137-0
Matthew Alonzo, Shweta Anil Kumar, Shane Allen, Monica Delgado, Fabian Alvarez-Primo, Laura Suggs, Binata Joddar
{"title":"Hydrogel scaffolds with elasticity-mimicking embryonic substrates promote cardiac cellular network formation.","authors":"Matthew Alonzo, Shweta Anil Kumar, Shane Allen, Monica Delgado, Fabian Alvarez-Primo, Laura Suggs, Binata Joddar","doi":"10.1007/s40204-020-00137-0","DOIUrl":"10.1007/s40204-020-00137-0","url":null,"abstract":"<p><p>Hydrogels are a class of biomaterials used for a wide range of biomedical applications, including as a three-dimensional (3D) scaffold for cell culture that mimics the extracellular matrix (ECM) of native tissues. To understand the role of the ECM in the modulation of cardiac cell function, alginate was used to fabricate crosslinked gels with stiffness values that resembled embryonic (2.66 ± 0.84 kPa), physiologic (8.98 ± 1.29 kPa) and fibrotic (18.27 ± 3.17 kPa) cardiac tissues. The average pore diameter and hydrogel swelling were seen to decrease with increasing substrate stiffness. Cardiomyocytes cultured within soft embryonic gels demonstrated enhanced cell spreading, elongation, and network formation, while a progressive increase in gel stiffness diminished these behaviors. Cell viability decreased with increasing hydrogel stiffness. Furthermore, cells in fibrotic gels showed enhanced protein expression of the characteristic cardiac stress biomarker, Troponin-I, while reduced protein expression of the cardiac gap junction protein, Connexin-43, in comparison to cells within embryonic gels. The results from this study demonstrate the role that 3D substrate stiffness has on cardiac tissue formation and its implications in the development of complex matrix remodeling-based conditions, such as myocardial fibrosis.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"9 3","pages":"125-137"},"PeriodicalIF":4.4,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544760/pdf/40204_2020_Article_137.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38421045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dielectric properties and in vitro hemocompatibility of Nd:YAG laser-irradiated polyethylene terephthalate. Nd:YAG 激光辐照聚对苯二甲酸乙二醇酯的介电性能和体外血液相容性。
IF 4.9 3区 医学
Progress in Biomaterials Pub Date : 2020-09-01 Epub Date: 2020-07-05 DOI: 10.1007/s40204-020-00134-3
Maie A Fadel, Nagwa A Kamel, Mirhane M Darwish, Salwa L Abd El-Messieh, Kamal N Abd-El-Nour, Wafaa A Khalil
{"title":"Dielectric properties and in vitro hemocompatibility of Nd:YAG laser-irradiated polyethylene terephthalate.","authors":"Maie A Fadel, Nagwa A Kamel, Mirhane M Darwish, Salwa L Abd El-Messieh, Kamal N Abd-El-Nour, Wafaa A Khalil","doi":"10.1007/s40204-020-00134-3","DOIUrl":"10.1007/s40204-020-00134-3","url":null,"abstract":"<p><p>Surface properties and morphology of the biomaterial play an essential role in the polymer-material interaction. In this work, laser surface modification of polyethylene terephthalate as a polymer with distinguished mechanical properties was carried out using (neodymium-doped yttrium aluminum garnet) Nd:YAG laser (1.064 µm) with different output power (0.3, 3, and 6 W). The structural, surface, and dielectric properties of PET before and after laser irradiation have been studied using attenuation total reflection-Fourier transform infrared (ATR-FTIR), dielectric spectroscopy (DS), scanning electron microscope (SEM), and contact angle measurements. Moreover, the anticoagulant properties of the laser-irradiated PET was determined through measuring the prothrombin time (PT), partial thromboplastin time (PTT), and international normalized ratio (INR). In vitro platelet adhesion test was used to assess the platelets adhered to the surface of the samples; in addition to hematological study. It was found that contact angle (θ) measurements of laser-irradiated PET samples decreased compared to the unirradiated PET. The irradiated samples at 0.3 W have the lowest contact angle which is a clear indication that surface treatment with Nd:YAG laser brought about improving the wettability of the polymer. From the dielectric measurements, both values of permittivity and dielectric loss decrease by increasing the laser power. The electrical conductivity decreases with increasing laser power, but still in the same order 10<sup>-14</sup> S/cm. The decrease in electrical conductivity σ may be due to the cross-linking of the polymeric matrix which led to a decrease in the total polarity and consequently decrease in electrical conductivity. The magnitude of σ obtained is highly recommended to be used for insulator purposes in addition to the main purpose that is blood contact.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"9 3","pages":"107-114"},"PeriodicalIF":4.9,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544811/pdf/40204_2020_Article_134.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38120417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of silver nanoparticles utilizing various biological systems: mechanisms and applications-a review. 利用各种生物系统合成银纳米粒子:机制与应用综述。
IF 4.9 3区 医学
Progress in Biomaterials Pub Date : 2020-09-01 Epub Date: 2020-07-11 DOI: 10.1007/s40204-020-00135-2
Divyanshi Garg, Aritri Sarkar, Pooja Chand, Pulkita Bansal, Deepak Gola, Shivangi Sharma, Sukirti Khantwal, Surabhi, Rekha Mehrotra, Nitin Chauhan, Randhir K Bharti
{"title":"Synthesis of silver nanoparticles utilizing various biological systems: mechanisms and applications-a review.","authors":"Divyanshi Garg, Aritri Sarkar, Pooja Chand, Pulkita Bansal, Deepak Gola, Shivangi Sharma, Sukirti Khantwal, Surabhi, Rekha Mehrotra, Nitin Chauhan, Randhir K Bharti","doi":"10.1007/s40204-020-00135-2","DOIUrl":"10.1007/s40204-020-00135-2","url":null,"abstract":"<p><p>The evolving technology of nanoparticle synthesis, especially silver nanoparticle (AgNPs) has already been applied in various fields i.e., electronics, optics, catalysis, food, health and environment. With advancement in research, it is possible to develop nanoparticles of various size, shape, morphology, and surface to volume ratio utilizing biological systems. A number of different agents and methods can be employed to develop choice based AgNPs using algae, plants, fungi and bacteria. The use of plant extracts to produce AgNPs appears to be more convenient, as the method is simple, environmental friendly and inexpensive, also requiring a single-step. The microbial synthesis of AgNps showed intracellular and extracellular mechanisms to reduce metal ions into nanoparticles. Studies have shown that different size (1-100 nm) and shapes (spherical, triangular and hexagonal etc.) of nanoparticles can be produced from various biological routes and these diverse nanoparticles have various functions and usability i.e., agriculture, medical-science, textile, cosmetics and environment protection. The present review provides an overview of various biological systems used for AgNP synthesis, its underlying mechanisms, further highlighting the current research and applications of variable shape and sized AgNPs.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"9 3","pages":"81-95"},"PeriodicalIF":4.9,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544790/pdf/40204_2020_Article_135.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38144670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artemisia annua L. as a promising medicinal plant for powerful wound healing applications. 黄花蒿是一种具有强大伤口愈合功能的药用植物。
IF 4.9 3区 医学
Progress in Biomaterials Pub Date : 2020-09-01 Epub Date: 2020-09-28 DOI: 10.1007/s40204-020-00138-z
Fatemeh Sadat Mirbehbahani, Fatemeh Hejazi, Najmeh Najmoddin, Azadeh Asefnejad
{"title":"Artemisia annua L. as a promising medicinal plant for powerful wound healing applications.","authors":"Fatemeh Sadat Mirbehbahani, Fatemeh Hejazi, Najmeh Najmoddin, Azadeh Asefnejad","doi":"10.1007/s40204-020-00138-z","DOIUrl":"10.1007/s40204-020-00138-z","url":null,"abstract":"<p><p>Artemisia annua L. has been utilized for the first time in a nanofibrous wound dressing composition. The extract of this valuable plant provides anti-inflammatory, anti-bacterial and anti-microbial properties which can be considered as a promising medicinal component in therapeutic applications. In the present work, Artemisia annua L. was picked up from Gorgan forest area of Northern Iran and its extract was prepared by methanol as the extraction solvent. In the fabrication of wound dressing, Artemisia annua L. extract was mixed with gelatin and a nanofibrous structure was formed by electrospinning technique. To have a wound dressing with acceptable stability and optimum mechanical properties, this biologically active layer was formed on a PCL nanofibrous base layer. The fabricated double-layer wound dressing was analyzed chemically, structurally, mechanically and biologically. ATR-FTIR spectra of the prepared wound dressing contain functional groups of Artemisia annua L. as peroxide groups, etc. SEM micrographs of electrospun gelatin/Artemisia annua L. confirmed the successful electrospinning process for producing Artemisia annua L.-containing nanofibers with mean diameter of 242.00 ± 67.53 nm. In vitro Artemisia annua L. release study of the fabricated wound dressings suggests a sustain release over 7 days for the crosslinked sample. In addition, evaluation of the in vitro structural stability of the prepared wound dressings confirmed the stability of the crosslinked nanofibrous structures in PBS solution environment. Biological study of the Artemisia annua L.-containing wound dressing revealed no cytotoxicity, good proliferation and attachment of the seeded fibroblasts cells and acceptable antibacterial property against Staphylococcus aureus bacteria.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"9 3","pages":"139-151"},"PeriodicalIF":4.9,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544745/pdf/40204_2020_Article_138.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38431465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of tannic acid-enriched materials modified by poly(ethylene glycol) for potential applications as wound dressing. 聚乙二醇改性富单宁酸材料在创面敷料中的应用前景。
IF 4.9 3区 医学
Progress in Biomaterials Pub Date : 2020-09-01 Epub Date: 2020-09-20 DOI: 10.1007/s40204-020-00136-1
Beata Kaczmarek, Olha Mazur, Oliwia Miłek, Marta Michalska-Sionkowska, Anna M Osyczka, Konrad Kleszczyński
{"title":"Development of tannic acid-enriched materials modified by poly(ethylene glycol) for potential applications as wound dressing.","authors":"Beata Kaczmarek,&nbsp;Olha Mazur,&nbsp;Oliwia Miłek,&nbsp;Marta Michalska-Sionkowska,&nbsp;Anna M Osyczka,&nbsp;Konrad Kleszczyński","doi":"10.1007/s40204-020-00136-1","DOIUrl":"https://doi.org/10.1007/s40204-020-00136-1","url":null,"abstract":"<p><p>The interests in the biomedical impact of tannic acid (TA) targeting production of various types of biomaterials, such as digital microfluids, chemical sensors, wound dressings, or bioimplants constantly increase. Despite the significant disadvantage of materials obtained from natural-based compounds and their low stability and fragility, therefore, there is an imperative need to improve materials properties by addition of stabilizing formulas. In this study, we performed assessments of thin films over TA proposed as a cross-linker to be used in combination with polymeric matrix based on chitosan (CTS), i.e. CTS/TA at 80:20 or CTS/TA at 50:50 and poly(ethylene glycol) (PEG) at the concentration of 10% or 20%. We evaluated their mechanical parameters as well as the cytotoxicity assay for human bone marrow mesenchymal stem cells, human melanotic melanoma (MNT-1), and human osteosarcoma (Saos-2). The results revealed significant differences in dose-dependent of PEG regarding the maximum tensile strength (σ<sub>max</sub>) or impact on the metabolic activity of tissue culture plastic. We observed that PEG improved mechanical parameters prominently, decreased the hemolysis rate, and did not affect cell viability negatively. Enclosed data, confirmed also by our previous reports, will undoubtedly pave the path for the future application of tannic acid-based biomaterials to treat wound healing.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"9 3","pages":"115-123"},"PeriodicalIF":4.9,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-020-00136-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38498042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Enhanced biological properties of collagen/chitosan-coated poly(ε-caprolactone) scaffold by surface modification with GHK-Cu peptide and 58S bioglass. GHK-Cu肽和58S生物玻璃表面修饰增强胶原/壳聚糖包被聚(ε-己内酯)支架的生物学性能。
IF 4.9 3区 医学
Progress in Biomaterials Pub Date : 2020-06-01 Epub Date: 2020-04-04 DOI: 10.1007/s40204-020-00129-0
Amir Mahdi Molavi, Alireza Sadeghi-Avalshahr, Samira Nokhasteh, Hojjat Naderi-Meshkin
{"title":"Enhanced biological properties of collagen/chitosan-coated poly(ε-caprolactone) scaffold by surface modification with GHK-Cu peptide and 58S bioglass.","authors":"Amir Mahdi Molavi,&nbsp;Alireza Sadeghi-Avalshahr,&nbsp;Samira Nokhasteh,&nbsp;Hojjat Naderi-Meshkin","doi":"10.1007/s40204-020-00129-0","DOIUrl":"https://doi.org/10.1007/s40204-020-00129-0","url":null,"abstract":"<p><p>Bioactive glasses and peptides have shown promising results in improving wound healing and skin repair. The present study explores the effectiveness of surface modification of collagen/chitosan-coated electrospun poly(ε-caprolactone) scaffold with 58S bioactive glass or GHK-Cu peptide. To coat scaffolds with the bioactive glass, we prepared suspensions of silanized bioactive glass powder with three different concentrations and the scaffolds were pipetted with suspensions. Similarly, GHK-Cu-coated scaffolds were prepared by pipetting adequate amount of 1-mM solution of peptide (in milli-Q) on the surface of scaffolds. ATR-FTIR spectroscopy indicated the successful modification of collagen/chitosan-coated electrospun poly(ε-caprolactone) scaffold with bioactive glass and GHK-Cu. Microstructural investigations and in vitro studies such as cell adhesion, cell viability and antibacterial assay were performed. All samples demonstrated desirable cell attachment. Compared to poly(ε-caprolactone)/collagen/chitosan, the cell proliferation of GHK-Cu and bioactive glass-coated (concentrations of 0.01 and 0.1) scaffolds increased significantly at days 3 and 7, respectively. Poly(ε-caprolactone)/collagen/chitosan-uncoated scaffold and scaffolds coated with GHK-Cu and bioactive glass revealed desirable antibacterial properties but the antibacterial activity of GHK-Cu-coated sample turned out to be superior. These findings indicated that biological properties of collagen/chitosan-coated synthetic polymer could be improved by GHK-Cu and bioactive glass.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"9 1-2","pages":"25-34"},"PeriodicalIF":4.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-020-00129-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37801886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Single-walled carbon nanotubes loaded hydroxyapatite-alginate beads with enhanced mechanical properties and sustained drug release ability. 单壁碳纳米管负载羟基磷灰石-海藻酸盐珠具有增强的机械性能和持续药物释放能力。
IF 4.9 3区 医学
Progress in Biomaterials Pub Date : 2020-06-01 Epub Date: 2020-01-30 DOI: 10.1007/s40204-020-00127-2
L B Sukhodub, L F Sukhodub, M O Kumeda, Yu I Prylutskyy, M V Pogorielov, M P Evstigneev, V V Kostjukov, N Y Strutynska, L L Vovchenko, S V Khrapatiy, U Ritter
{"title":"Single-walled carbon nanotubes loaded hydroxyapatite-alginate beads with enhanced mechanical properties and sustained drug release ability.","authors":"L B Sukhodub,&nbsp;L F Sukhodub,&nbsp;M O Kumeda,&nbsp;Yu I Prylutskyy,&nbsp;M V Pogorielov,&nbsp;M P Evstigneev,&nbsp;V V Kostjukov,&nbsp;N Y Strutynska,&nbsp;L L Vovchenko,&nbsp;S V Khrapatiy,&nbsp;U Ritter","doi":"10.1007/s40204-020-00127-2","DOIUrl":"https://doi.org/10.1007/s40204-020-00127-2","url":null,"abstract":"<p><p>Single-walled carbon nanotubes (SWCNTs) containing biomaterial with enhanced mechanical properties for the potential orthopedic application were synthesized and investigated. X-ray diffraction and X-ray fluorescence analysis were indications of the formation of calcium-deficient (Ca/P = 1.65) hydroxyapatite (HA) with a small carbonate content under influence of microwave irradiation. The investigated mechanical properties (maximal relative deformation, compressive strength and Young's modulus) of SWCNT loaded HA-alginate composites confirm their dependence on SWCNTs content. The compressive strength of HA-alginate-SWCNT and the HA-alginate control (202 and 159 MPa, respectively) lies within the values characteristic for the cortical bone. The addition of 0.5% SWCNT, in relation to the content of HA, increases the Young's modulus of the HA-alginate-SWCNT (645 MPa) compared to the SWCNT-free HA-alginate sample (563 MPa), and enhances the material shape stability in simulated physiological conditions. Structural modeling of HA-alginate-SWCNT system showed, that physical adsorption of SWCNT into HA-alginate occurs by forming triple complexes stabilized by solvophobic/van der Waals interactions and H-bonds. The high-performance liquid chromatography demonstrated the influence of SWCNTs on the sustained anaesthesinum drug (used as a model drug) release (456 h against 408 h for SWCNT-free sample). Cell culture assay confirmed biocompatibility and stimulation of osteoblast proliferation of 0.05% and 0.5% SWCNT-containing composites during a 3-day cultivation. All these facts may suggest the potential possibility of using the SWCNT-containing materials, based on HA and alginate, for bone tissue engineering.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"9 1-2","pages":"1-14"},"PeriodicalIF":4.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-020-00127-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37596511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信