{"title":"聚乙二醇姜黄素负载的纳米纤维垫与控制爆发释放通过头结弹簧设计。","authors":"Mahdi Saeed, Hamid Mirzadeh, Mojgan Zandi, Jalal Barzin","doi":"10.1007/s40204-020-00140-5","DOIUrl":null,"url":null,"abstract":"<p><p>APEGylatedcurcumin (PCU) loaded electrospuns based on poly(ε-caprolactone) (PCL) andpolyvinyl alcohol (PVA) were fabricated for wound dressing applications. The main reason for this wound dressing design is antibacterialactivity enhancement, and wound exudates management. PEGylation increases curcuminsantibacterial properties and PVA can help exudates management. For optimal wound dressing, first, response surface methodology (RSM) was applied to optimize the electrospinning parameters to achieve appropriate nanofibrous mats. Then a three-layer electrospun was designed by considering the water absorbability, PCU release profile as well as antibacterial and biocompatibility of the final wound dressing. The burst release in controlled release systems could be evaluated for prevention of the higher initial drug release and control the effective life time. The PCU release results illustrated that the bead knot plays a positive role in controlling the release profile andby increase in the number of beads per unit area from 3000 to 9000 mm<sup>-2</sup>,the PCU burst release will be reduced; Also in vitro studies show that optimized three-layer dressing based on PCL/PVA/PCU can support water vapour transmission rate in optimal range and also absorb more than three times exudates in comparison with mono-layerdressing. Antibacterial tests show that the electrospun wound dressing containing 5% PCU exhibits100% antibacterial activityas well as cell viability level within an acceptable range.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-020-00140-5","citationCount":"3","resultStr":"{\"title\":\"PEGylated curcumin-loaded nanofibrous mats with controlled burst release through bead knot-on-spring design.\",\"authors\":\"Mahdi Saeed, Hamid Mirzadeh, Mojgan Zandi, Jalal Barzin\",\"doi\":\"10.1007/s40204-020-00140-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>APEGylatedcurcumin (PCU) loaded electrospuns based on poly(ε-caprolactone) (PCL) andpolyvinyl alcohol (PVA) were fabricated for wound dressing applications. The main reason for this wound dressing design is antibacterialactivity enhancement, and wound exudates management. PEGylation increases curcuminsantibacterial properties and PVA can help exudates management. For optimal wound dressing, first, response surface methodology (RSM) was applied to optimize the electrospinning parameters to achieve appropriate nanofibrous mats. Then a three-layer electrospun was designed by considering the water absorbability, PCU release profile as well as antibacterial and biocompatibility of the final wound dressing. The burst release in controlled release systems could be evaluated for prevention of the higher initial drug release and control the effective life time. The PCU release results illustrated that the bead knot plays a positive role in controlling the release profile andby increase in the number of beads per unit area from 3000 to 9000 mm<sup>-2</sup>,the PCU burst release will be reduced; Also in vitro studies show that optimized three-layer dressing based on PCL/PVA/PCU can support water vapour transmission rate in optimal range and also absorb more than three times exudates in comparison with mono-layerdressing. Antibacterial tests show that the electrospun wound dressing containing 5% PCU exhibits100% antibacterial activityas well as cell viability level within an acceptable range.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40204-020-00140-5\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-020-00140-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-020-00140-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
PEGylated curcumin-loaded nanofibrous mats with controlled burst release through bead knot-on-spring design.
APEGylatedcurcumin (PCU) loaded electrospuns based on poly(ε-caprolactone) (PCL) andpolyvinyl alcohol (PVA) were fabricated for wound dressing applications. The main reason for this wound dressing design is antibacterialactivity enhancement, and wound exudates management. PEGylation increases curcuminsantibacterial properties and PVA can help exudates management. For optimal wound dressing, first, response surface methodology (RSM) was applied to optimize the electrospinning parameters to achieve appropriate nanofibrous mats. Then a three-layer electrospun was designed by considering the water absorbability, PCU release profile as well as antibacterial and biocompatibility of the final wound dressing. The burst release in controlled release systems could be evaluated for prevention of the higher initial drug release and control the effective life time. The PCU release results illustrated that the bead knot plays a positive role in controlling the release profile andby increase in the number of beads per unit area from 3000 to 9000 mm-2,the PCU burst release will be reduced; Also in vitro studies show that optimized three-layer dressing based on PCL/PVA/PCU can support water vapour transmission rate in optimal range and also absorb more than three times exudates in comparison with mono-layerdressing. Antibacterial tests show that the electrospun wound dressing containing 5% PCU exhibits100% antibacterial activityas well as cell viability level within an acceptable range.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.