Srinath Palakurthy, K Venugopal Reddy, Sushil Patel, P Abdul Azeem
{"title":"A cost effective SiO<sub>2</sub>-CaO-Na<sub>2</sub>O bio-glass derived from bio-waste resources for biomedical applications.","authors":"Srinath Palakurthy, K Venugopal Reddy, Sushil Patel, P Abdul Azeem","doi":"10.1007/s40204-020-00145-0","DOIUrl":null,"url":null,"abstract":"<p><p>The present paper describes the in vitro bioactivity, cytocompatibility and degradation performance of SiO<sub>2</sub>-CaO-Na<sub>2</sub>O bio-glass synthesized using bio-waste. Egg shells and rice husk ash (RHA) bio-wastes were used as sources of calcium oxide (CaO) and silica (SiO<sub>2</sub>), respectively. Glass samples were obtained by melt-quenching technique. Bioactivity was studied using in vitro experiments in simulated body fluid (SBF), degradation behaviour was evaluated in Tris-HCl buffer solutions recommended by ISO 10993-14 standards and cytocompatibility was estimated using MTT assay. The formation of hydroxyapatite was characterized by XRD, FTIR and SEM-EDS after soaking the glass samples in SBF solution. XRD confirmed the phase of hydroxyapatite with its standard JCPDS data. FTIR analyses revealed the occurrence of distinctive functional groups related to hydroxyapatite. Surface micrographs showed the agglomerated globular shape morphology of hydroxyapatite, while EDS analysis confirmed the existence of biological elements of apatite such as Ca, P and O. Degradation study results showed that the glass thus prepared has considerable controlled degradation rate. MTT assay revealed the cytocompatibility nature for different dosages (1000-50 μg/mL) of the prepared glass with MG-63 cells. These results perfectly established that egg shells and RHA are potentially beneficial resources for the production of bio-glasses.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-020-00145-0","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-020-00145-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 16
Abstract
The present paper describes the in vitro bioactivity, cytocompatibility and degradation performance of SiO2-CaO-Na2O bio-glass synthesized using bio-waste. Egg shells and rice husk ash (RHA) bio-wastes were used as sources of calcium oxide (CaO) and silica (SiO2), respectively. Glass samples were obtained by melt-quenching technique. Bioactivity was studied using in vitro experiments in simulated body fluid (SBF), degradation behaviour was evaluated in Tris-HCl buffer solutions recommended by ISO 10993-14 standards and cytocompatibility was estimated using MTT assay. The formation of hydroxyapatite was characterized by XRD, FTIR and SEM-EDS after soaking the glass samples in SBF solution. XRD confirmed the phase of hydroxyapatite with its standard JCPDS data. FTIR analyses revealed the occurrence of distinctive functional groups related to hydroxyapatite. Surface micrographs showed the agglomerated globular shape morphology of hydroxyapatite, while EDS analysis confirmed the existence of biological elements of apatite such as Ca, P and O. Degradation study results showed that the glass thus prepared has considerable controlled degradation rate. MTT assay revealed the cytocompatibility nature for different dosages (1000-50 μg/mL) of the prepared glass with MG-63 cells. These results perfectly established that egg shells and RHA are potentially beneficial resources for the production of bio-glasses.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.