Fatemeh Zamani, Mohammad Amani Tehran, Atiyeh Abbasi
{"title":"Fabrication of PCL nanofibrous scaffold with tuned porosity for neural cell culture.","authors":"Fatemeh Zamani, Mohammad Amani Tehran, Atiyeh Abbasi","doi":"10.1007/s40204-021-00159-2","DOIUrl":null,"url":null,"abstract":"<p><p>In tissue engineering, the structure of nanofibrous scaffolds and optimization of their properties play important role in the enhancement of cell growth and proliferation. Therefore, the basic idea of the current study is to find a proper method for tuning the extent of porosity of the scaffold, study the effect of porosity on the cell growth, and optimize the extent of porosity with the aim of achieving the maximum cell growth. To tune the scaffold's porosity, four types of metal mesh with different mesh sizes were employed as collectors. For this purpose, the structural properties of polycaprolactone nanofibrous layers which were electrospun on collectors, and the level of neural A-172 cell growth on layers were investigated, and the results were compared with the results attained for the fabricated nanofibrous layer on a flat aluminum collector. It was found that upon changing the porosity of the metal mesh as collector, the fibers' diameter would be inevitably changed, albeit insignificantly, and following no specific trends. However, changing the mesh size has shown a significant effect on the thickness and porosity of nanofibrous layer. According to the MTT assay results, the optimum neural cell growth was observed for the electrospun nanofibrous scaffold with the porosity of 96% and pore size of (0.42-23 µm) which has been fabricated on the type-4 collector having a mesh size of 10. The fabricated scaffold using this mesh with the optimum extent of porosity (58%) resulted in 44% enhancement in the cell growth as compared with the fabricated layer on the flat collector.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40204-021-00159-2","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00159-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2
Abstract
In tissue engineering, the structure of nanofibrous scaffolds and optimization of their properties play important role in the enhancement of cell growth and proliferation. Therefore, the basic idea of the current study is to find a proper method for tuning the extent of porosity of the scaffold, study the effect of porosity on the cell growth, and optimize the extent of porosity with the aim of achieving the maximum cell growth. To tune the scaffold's porosity, four types of metal mesh with different mesh sizes were employed as collectors. For this purpose, the structural properties of polycaprolactone nanofibrous layers which were electrospun on collectors, and the level of neural A-172 cell growth on layers were investigated, and the results were compared with the results attained for the fabricated nanofibrous layer on a flat aluminum collector. It was found that upon changing the porosity of the metal mesh as collector, the fibers' diameter would be inevitably changed, albeit insignificantly, and following no specific trends. However, changing the mesh size has shown a significant effect on the thickness and porosity of nanofibrous layer. According to the MTT assay results, the optimum neural cell growth was observed for the electrospun nanofibrous scaffold with the porosity of 96% and pore size of (0.42-23 µm) which has been fabricated on the type-4 collector having a mesh size of 10. The fabricated scaffold using this mesh with the optimum extent of porosity (58%) resulted in 44% enhancement in the cell growth as compared with the fabricated layer on the flat collector.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.