Proceedings of the Edinburgh Mathematical Society最新文献

筛选
英文 中文
The Schwarzian norm estimates for Janowski convex functions 扬诺夫斯基凸函数的施瓦兹规范估计值
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-02-12 DOI: 10.1017/s0013091524000014
Md Firoz Ali, Sanjit Pal
{"title":"The Schwarzian norm estimates for Janowski convex functions","authors":"Md Firoz Ali, Sanjit Pal","doi":"10.1017/s0013091524000014","DOIUrl":"https://doi.org/10.1017/s0013091524000014","url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline1.png\" /> <jats:tex-math>$-1leq B lt Aleq 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline2.png\" /> <jats:tex-math>$mathcal{C}(A,B)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the class of normalized Janowski convex functions defined in the unit disk <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline3.png\" /> <jats:tex-math>$mathbb{D}:={zinmathbb{C}:|z| lt 1}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> that satisfy the subordination relation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline4.png\" /> <jats:tex-math>$1+zf''(z)/f'(z)prec (1+Az)/(1+Bz)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the present article, we determine the sharp estimate of the Schwarzian norm for functions in the class <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline5.png\" /> <jats:tex-math>$mathcal{C}(A,B)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The Dieudonné’s lemma which gives the exact region of variability for derivatives at a point of bounded functions, plays the key role in this study, and we also use this lemma to construct the extremal functions for the sharpness by a new method.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"39 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139773202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating the Hausdorff measure using recurrence 利用递推估算豪斯多夫量纲
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-01-12 DOI: 10.1017/s0013091523000755
Łukasz Pawelec
{"title":"Estimating the Hausdorff measure using recurrence","authors":"Łukasz Pawelec","doi":"10.1017/s0013091523000755","DOIUrl":"https://doi.org/10.1017/s0013091523000755","url":null,"abstract":"We show a new method of estimating the Hausdorff measure of a set from below. The method requires computing the subsequent closest return times of a point to itself.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"18 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139459729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commutants and complex symmetry of finite Blaschke product multiplication operator in 有限布拉什克积乘法算子中的换元和复对称性
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-01-11 DOI: 10.1017/s0013091523000809
Arup Chattopadhyay, Soma Das
{"title":"Commutants and complex symmetry of finite Blaschke product multiplication operator in","authors":"Arup Chattopadhyay, Soma Das","doi":"10.1017/s0013091523000809","DOIUrl":"https://doi.org/10.1017/s0013091523000809","url":null,"abstract":"<p>Consider the multiplication operator <span>M<span>B</span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$L^2(mathbb{T})$</span></span></img></span></span>, where the symbol <span>B</span> is a finite Blaschke product. In this article, we characterize the commutant of <span>M<span>B</span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$L^2(mathbb{T})$</span></span></img></span></span>. As an application of this characterization result, we explicitly determine the class of conjugations commuting with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$M_{z^2}$</span></span></img></span></span> or making <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$M_{z^2}$</span></span></img></span></span> complex symmetric by introducing a new class of conjugations in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$L^2(mathbb{T})$</span></span></img></span></span>. Moreover, we analyse their properties while keeping the whole Hardy space, model space and Beurling-type subspaces invariant. Furthermore, we extended our study concerning conjugations in the case of finite Blaschke products.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"11 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multidimensional Frank–Laptev–Weidl improvement of the Hardy inequality 哈代不等式的多维弗兰克-拉普捷夫-魏德改进
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-01-11 DOI: 10.1017/s0013091523000780
Prasun Roychowdhury, Michael Ruzhansky, Durvudkhan Suragan
{"title":"Multidimensional Frank–Laptev–Weidl improvement of the Hardy inequality","authors":"Prasun Roychowdhury, Michael Ruzhansky, Durvudkhan Suragan","doi":"10.1017/s0013091523000780","DOIUrl":"https://doi.org/10.1017/s0013091523000780","url":null,"abstract":"<p>We establish a new improvement of the classical <span>L<span>p</span></span>-Hardy inequality on the multidimensional Euclidean space in the supercritical case. Recently, in [14], there has been a new kind of development of the one-dimensional Hardy inequality. Using some radialisation techniques of functions and then exploiting symmetric decreasing rearrangement arguments on the real line, the new multidimensional version of the Hardy inequality is given. Some consequences are also discussed.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Goldie dimension for C*-algebras C* 矩阵的戈尔迪维度
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-01-11 DOI: 10.1017/s0013091523000767
Mohammad Rouzbehani, Massoud Amini, Mohammad B. Asadi
{"title":"Goldie dimension for C*-algebras","authors":"Mohammad Rouzbehani, Massoud Amini, Mohammad B. Asadi","doi":"10.1017/s0013091523000767","DOIUrl":"https://doi.org/10.1017/s0013091523000767","url":null,"abstract":"<p>In this article, we introduce and study the notion of Goldie dimension for C*-algebras. We prove that a C*-algebra <span>A</span> has Goldie dimension <span>n</span> if and only if the dimension of the center of its local multiplier algebra is <span>n</span>. In this case, <span>A</span> has finite-dimensional center and its primitive spectrum is extremally disconnected. If moreover, A is extending, we show that it decomposes into a direct sum of <span>n</span> prime C*-algebras. In particular, every stably finite, exact C*-algebra with Goldie dimension, that has the projection property and a strictly full element, admits a full projection and a non-zero densely defined lower semi-continuous trace. Finally we show that certain C*-algebras with Goldie dimension (not necessarily simple, separable or nuclear) are classifiable by the Elliott invariant.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"16 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139422630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitesimally Moebius bendable hypersurfaces 无限莫比斯可弯曲超曲面
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-01-11 DOI: 10.1017/s0013091523000792
M.I. Jimenez, R. Tojeiro
{"title":"Infinitesimally Moebius bendable hypersurfaces","authors":"M.I. Jimenez, R. Tojeiro","doi":"10.1017/s0013091523000792","DOIUrl":"https://doi.org/10.1017/s0013091523000792","url":null,"abstract":"&lt;p&gt;Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline1.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$fcolon M^nto mathbb{R}^{n+1}$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; that admit non-trivial deformations preserving the Moebius metric. For &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$ngeq 5$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, the classification was completed by the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$fcolon M^nto mathbb{R}^m$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; into Euclidean space as a one-parameter family of immersions &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$f_tcolon M^nto mathbb{R}^m$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, with &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$tin (-epsilon, epsilon)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; and &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$f_0=f$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, such that the Moebius metrics determined by &lt;span&gt;f&lt;span&gt;t&lt;/span&gt;&lt;/span&gt; coincide up to the first order. Then we characterize isometric immersions &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$fcolon M^nto mathbb{R}^m$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; of arbitrary codimension that admit a non-trivial infinitesimal Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such characterization to classify the u","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"9 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139422697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On traces of Bochner representable operators on the space of bounded measurable functions 论有界可测函数空间上的波克纳可表示算子的踪迹
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2024-01-11 DOI: 10.1017/s0013091523000779
Marian Nowak, Juliusz Stochmal
{"title":"On traces of Bochner representable operators on the space of bounded measurable functions","authors":"Marian Nowak, Juliusz Stochmal","doi":"10.1017/s0013091523000779","DOIUrl":"https://doi.org/10.1017/s0013091523000779","url":null,"abstract":"<p>Let Σ be a <span>σ</span>-algebra of subsets of a set Ω and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$B(Sigma)$</span></span></img></span></span> be the Banach space of all bounded Σ-measurable scalar functions on Ω. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$tau(B(Sigma),ca(Sigma))$</span></span></img></span></span> denote the natural Mackey topology on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$B(Sigma)$</span></span></img></span></span>. It is shown that a linear operator <span>T</span> from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$B(Sigma)$</span></span></img></span></span> to a Banach space <span>E</span> is Bochner representable if and only if <span>T</span> is a nuclear operator between the locally convex space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(B(Sigma),tau(B(Sigma),ca(Sigma)))$</span></span></img></span></span> and the Banach space <span>E</span>. We derive a formula for the trace of a Bochner representable operator <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$T:B({cal B} o)rightarrow B({cal B} o)$</span></span></img></span></span> generated by a function <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$fin L^1({cal B} o, C(Omega))$</span></span></img></span></span>, where Ω is a compact Hausdorff space.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"9 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139422804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The spherical growth series of Dyer groups 戴尔群的球形增长序列
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2023-12-21 DOI: 10.1017/s0013091523000743
Luis Paris, Olga Varghese
{"title":"The spherical growth series of Dyer groups","authors":"Luis Paris, Olga Varghese","doi":"10.1017/s0013091523000743","DOIUrl":"https://doi.org/10.1017/s0013091523000743","url":null,"abstract":"<p>Graph products of cyclic groups and Coxeter groups are two families of groups that are defined by labelled graphs. The family of Dyer groups contains these both families and gives us a framework to study these groups in a unified way. This paper focuses on the spherical growth series of a Dyer group <span>D</span> with respect to the standard generating set. We give a recursive formula for the spherical growth series of <span>D</span> in terms of the spherical growth series of standard parabolic subgroups. As an application we obtain the rationality of the spherical growth series of a Dyer group. Furthermore, we show that the spherical growth series of <span>D</span> is closely related to the Euler characteristic of <span>D</span>.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"79 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138825072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isomorphisms of quadratic quasigroups 二次拟群的同构
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2023-11-24 DOI: 10.1017/s0013091523000585
Aleš Drápal, Ian M. Wanless
{"title":"Isomorphisms of quadratic quasigroups","authors":"Aleš Drápal, Ian M. Wanless","doi":"10.1017/s0013091523000585","DOIUrl":"https://doi.org/10.1017/s0013091523000585","url":null,"abstract":"Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091523000585_inline1.png\" /&gt; &lt;jats:tex-math&gt;$mathbb F$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be a finite field of odd order and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091523000585_inline2.png\" /&gt; &lt;jats:tex-math&gt;$a,binmathbb Fsetminus{0,1}$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be such that &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091523000585_inline3.png\" /&gt; &lt;jats:tex-math&gt;$chi(a) = chi(b)$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091523000585_inline4.png\" /&gt; &lt;jats:tex-math&gt;$chi(1-a)=chi(1-b)$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, where &lt;jats:italic&gt;χ&lt;/jats:italic&gt; is the extended quadratic character on &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091523000585_inline5.png\" /&gt; &lt;jats:tex-math&gt;$mathbb F$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091523000585_inline6.png\" /&gt; &lt;jats:tex-math&gt;$Q_{a,b}$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be the quasigroup over &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091523000585_inline7.png\" /&gt; &lt;jats:tex-math&gt;$mathbb F$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; defined by &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091523000585_inline8.png\" /&gt; &lt;jats:tex-math&gt;$(x,y)mapsto x+a(y-x)$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; if &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091523000585_inline9.png\" /&gt; &lt;jats:tex-math&gt;$chi(y-x) geqslant 0$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091523000585_inline10.png\" /&gt; &lt;jats:tex-math&gt;$(x,y) mapsto x+b(y-x)$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; if &lt;jats:inl","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"34 11-12","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On the representability of actions of Leibniz algebras and Poisson algebras 莱布尼兹代数和泊松代数作用的可表征性
IF 0.7 3区 数学
Proceedings of the Edinburgh Mathematical Society Pub Date : 2023-11-22 DOI: 10.1017/s0013091523000548
Alan S. Cigoli, Manuel Mancini, Giuseppe Metere
{"title":"On the representability of actions of Leibniz algebras and Poisson algebras","authors":"Alan S. Cigoli, Manuel Mancini, Giuseppe Metere","doi":"10.1017/s0013091523000548","DOIUrl":"https://doi.org/10.1017/s0013091523000548","url":null,"abstract":"In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting morphisms. Moreover, we study the representability of actions of the category of Poisson algebras and we prove that the subvariety of commutative Poisson algebras is not weakly action representable.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138542301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信