{"title":"有限布拉什克积乘法算子中的换元和复对称性","authors":"Arup Chattopadhyay, Soma Das","doi":"10.1017/s0013091523000809","DOIUrl":null,"url":null,"abstract":"<p>Consider the multiplication operator <span>M<span>B</span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$L^2(\\mathbb{T})$</span></span></img></span></span>, where the symbol <span>B</span> is a finite Blaschke product. In this article, we characterize the commutant of <span>M<span>B</span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$L^2(\\mathbb{T})$</span></span></img></span></span>. As an application of this characterization result, we explicitly determine the class of conjugations commuting with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$M_{z^2}$</span></span></img></span></span> or making <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$M_{z^2}$</span></span></img></span></span> complex symmetric by introducing a new class of conjugations in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$L^2(\\mathbb{T})$</span></span></img></span></span>. Moreover, we analyse their properties while keeping the whole Hardy space, model space and Beurling-type subspaces invariant. Furthermore, we extended our study concerning conjugations in the case of finite Blaschke products.</p>","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"11 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutants and complex symmetry of finite Blaschke product multiplication operator in\",\"authors\":\"Arup Chattopadhyay, Soma Das\",\"doi\":\"10.1017/s0013091523000809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider the multiplication operator <span>M<span>B</span></span> in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L^2(\\\\mathbb{T})$</span></span></img></span></span>, where the symbol <span>B</span> is a finite Blaschke product. In this article, we characterize the commutant of <span>M<span>B</span></span> in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L^2(\\\\mathbb{T})$</span></span></img></span></span>. As an application of this characterization result, we explicitly determine the class of conjugations commuting with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$M_{z^2}$</span></span></img></span></span> or making <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$M_{z^2}$</span></span></img></span></span> complex symmetric by introducing a new class of conjugations in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110124038844-0402:S0013091523000809:S0013091523000809_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$L^2(\\\\mathbb{T})$</span></span></img></span></span>. Moreover, we analyse their properties while keeping the whole Hardy space, model space and Beurling-type subspaces invariant. Furthermore, we extended our study concerning conjugations in the case of finite Blaschke products.</p>\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091523000809\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091523000809","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Commutants and complex symmetry of finite Blaschke product multiplication operator in
Consider the multiplication operator MB in $L^2(\mathbb{T})$, where the symbol B is a finite Blaschke product. In this article, we characterize the commutant of MB in $L^2(\mathbb{T})$. As an application of this characterization result, we explicitly determine the class of conjugations commuting with $M_{z^2}$ or making $M_{z^2}$ complex symmetric by introducing a new class of conjugations in $L^2(\mathbb{T})$. Moreover, we analyse their properties while keeping the whole Hardy space, model space and Beurling-type subspaces invariant. Furthermore, we extended our study concerning conjugations in the case of finite Blaschke products.
期刊介绍:
The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.