Mohammad Rouzbehani, Massoud Amini, Mohammad B. Asadi
{"title":"C* 矩阵的戈尔迪维度","authors":"Mohammad Rouzbehani, Massoud Amini, Mohammad B. Asadi","doi":"10.1017/s0013091523000767","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce and study the notion of Goldie dimension for C*-algebras. We prove that a C*-algebra <span>A</span> has Goldie dimension <span>n</span> if and only if the dimension of the center of its local multiplier algebra is <span>n</span>. In this case, <span>A</span> has finite-dimensional center and its primitive spectrum is extremally disconnected. If moreover, A is extending, we show that it decomposes into a direct sum of <span>n</span> prime C*-algebras. In particular, every stably finite, exact C*-algebra with Goldie dimension, that has the projection property and a strictly full element, admits a full projection and a non-zero densely defined lower semi-continuous trace. Finally we show that certain C*-algebras with Goldie dimension (not necessarily simple, separable or nuclear) are classifiable by the Elliott invariant.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Goldie dimension for C*-algebras\",\"authors\":\"Mohammad Rouzbehani, Massoud Amini, Mohammad B. Asadi\",\"doi\":\"10.1017/s0013091523000767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we introduce and study the notion of Goldie dimension for C*-algebras. We prove that a C*-algebra <span>A</span> has Goldie dimension <span>n</span> if and only if the dimension of the center of its local multiplier algebra is <span>n</span>. In this case, <span>A</span> has finite-dimensional center and its primitive spectrum is extremally disconnected. If moreover, A is extending, we show that it decomposes into a direct sum of <span>n</span> prime C*-algebras. In particular, every stably finite, exact C*-algebra with Goldie dimension, that has the projection property and a strictly full element, admits a full projection and a non-zero densely defined lower semi-continuous trace. Finally we show that certain C*-algebras with Goldie dimension (not necessarily simple, separable or nuclear) are classifiable by the Elliott invariant.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091523000767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091523000767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文将介绍并研究 C* 代数的戈尔迪维度概念。我们证明,当且仅当一个 C* 代数的局部乘子代数的中心维数为 n 时,A 才具有戈尔迪维数 n。在这种情况下,A 具有有限维中心,其原始谱是极端断开的。此外,如果 A 是扩展的,我们会证明它分解为 n 个质数 C*-代数的直接和。特别是,每一个具有戈尔迪维度的稳定有限精确 C* 代数,如果具有投影性质和严格满元素,都会有一个满投影和一个非零的密集定义的下半连续迹。最后,我们证明某些具有戈尔迪维度的 C* 代数(不一定是简单的、可分离的或核的)是可以通过埃利奥特不变量来分类的。
In this article, we introduce and study the notion of Goldie dimension for C*-algebras. We prove that a C*-algebra A has Goldie dimension n if and only if the dimension of the center of its local multiplier algebra is n. In this case, A has finite-dimensional center and its primitive spectrum is extremally disconnected. If moreover, A is extending, we show that it decomposes into a direct sum of n prime C*-algebras. In particular, every stably finite, exact C*-algebra with Goldie dimension, that has the projection property and a strictly full element, admits a full projection and a non-zero densely defined lower semi-continuous trace. Finally we show that certain C*-algebras with Goldie dimension (not necessarily simple, separable or nuclear) are classifiable by the Elliott invariant.