{"title":"On traces of Bochner representable operators on the space of bounded measurable functions","authors":"Marian Nowak, Juliusz Stochmal","doi":"10.1017/s0013091523000779","DOIUrl":null,"url":null,"abstract":"<p>Let Σ be a <span>σ</span>-algebra of subsets of a set Ω and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$B(\\Sigma)$</span></span></img></span></span> be the Banach space of all bounded Σ-measurable scalar functions on Ω. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\tau(B(\\Sigma),ca(\\Sigma))$</span></span></img></span></span> denote the natural Mackey topology on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$B(\\Sigma)$</span></span></img></span></span>. It is shown that a linear operator <span>T</span> from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$B(\\Sigma)$</span></span></img></span></span> to a Banach space <span>E</span> is Bochner representable if and only if <span>T</span> is a nuclear operator between the locally convex space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(B(\\Sigma),\\tau(B(\\Sigma),ca(\\Sigma)))$</span></span></img></span></span> and the Banach space <span>E</span>. We derive a formula for the trace of a Bochner representable operator <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$T:B({\\cal B} o)\\rightarrow B({\\cal B} o)$</span></span></img></span></span> generated by a function <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$f\\in L^1({\\cal B} o, C(\\Omega))$</span></span></img></span></span>, where Ω is a compact Hausdorff space.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091523000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let Σ be a σ-algebra of subsets of a set Ω and $B(\Sigma)$ be the Banach space of all bounded Σ-measurable scalar functions on Ω. Let $\tau(B(\Sigma),ca(\Sigma))$ denote the natural Mackey topology on $B(\Sigma)$. It is shown that a linear operator T from $B(\Sigma)$ to a Banach space E is Bochner representable if and only if T is a nuclear operator between the locally convex space $(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ and the Banach space E. We derive a formula for the trace of a Bochner representable operator $T:B({\cal B} o)\rightarrow B({\cal B} o)$ generated by a function $f\in L^1({\cal B} o, C(\Omega))$, where Ω is a compact Hausdorff space.