On traces of Bochner representable operators on the space of bounded measurable functions

Pub Date : 2024-01-11 DOI:10.1017/s0013091523000779
Marian Nowak, Juliusz Stochmal
{"title":"On traces of Bochner representable operators on the space of bounded measurable functions","authors":"Marian Nowak, Juliusz Stochmal","doi":"10.1017/s0013091523000779","DOIUrl":null,"url":null,"abstract":"<p>Let Σ be a <span>σ</span>-algebra of subsets of a set Ω and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$B(\\Sigma)$</span></span></img></span></span> be the Banach space of all bounded Σ-measurable scalar functions on Ω. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\tau(B(\\Sigma),ca(\\Sigma))$</span></span></img></span></span> denote the natural Mackey topology on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$B(\\Sigma)$</span></span></img></span></span>. It is shown that a linear operator <span>T</span> from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$B(\\Sigma)$</span></span></img></span></span> to a Banach space <span>E</span> is Bochner representable if and only if <span>T</span> is a nuclear operator between the locally convex space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(B(\\Sigma),\\tau(B(\\Sigma),ca(\\Sigma)))$</span></span></img></span></span> and the Banach space <span>E</span>. We derive a formula for the trace of a Bochner representable operator <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$T:B({\\cal B} o)\\rightarrow B({\\cal B} o)$</span></span></img></span></span> generated by a function <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110130638066-0304:S0013091523000779:S0013091523000779_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$f\\in L^1({\\cal B} o, C(\\Omega))$</span></span></img></span></span>, where Ω is a compact Hausdorff space.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091523000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let Σ be a σ-algebra of subsets of a set Ω and Abstract Image$B(\Sigma)$ be the Banach space of all bounded Σ-measurable scalar functions on Ω. Let Abstract Image$\tau(B(\Sigma),ca(\Sigma))$ denote the natural Mackey topology on Abstract Image$B(\Sigma)$. It is shown that a linear operator T from Abstract Image$B(\Sigma)$ to a Banach space E is Bochner representable if and only if T is a nuclear operator between the locally convex space Abstract Image$(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ and the Banach space E. We derive a formula for the trace of a Bochner representable operator Abstract Image$T:B({\cal B} o)\rightarrow B({\cal B} o)$ generated by a function Abstract Image$f\in L^1({\cal B} o, C(\Omega))$, where Ω is a compact Hausdorff space.

分享
查看原文
论有界可测函数空间上的波克纳可表示算子的踪迹
让 Σ 是一个集合 Ω 的子集的 σ 代数,$B(\Sigma)$ 是 Ω 上所有有界 Σ 可测标量函数的巴纳赫空间。让 $\tau(B(\Sigma),ca(\Sigma))$ 表示 $B(\Sigma)$ 上的自然麦基拓扑。研究表明,当且仅当 T 是局部凸空间 $(B(\Sigma),\tau(B(\Sigma),ca(\Sigma)))$ 和巴拿赫空间 E 之间的核算子时,从 $B(\Sigma)$ 到巴拿赫空间 E 的线性算子 T 才是 Bochner 可表示的。我们推导出了由函数 $f\in L^1({\cal B} o, C(\Omega))$ 生成的波赫纳可表示算子 $T:B({\cal B} o)\rightarrow B({\cal B} o)$ 的迹的公式,其中 Ω 是一个紧凑的豪斯多夫空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信