Infinitesimally Moebius bendable hypersurfaces

Pub Date : 2024-01-11 DOI:10.1017/s0013091523000792
M.I. Jimenez, R. Tojeiro
{"title":"Infinitesimally Moebius bendable hypersurfaces","authors":"M.I. Jimenez, R. Tojeiro","doi":"10.1017/s0013091523000792","DOIUrl":null,"url":null,"abstract":"<p>Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$f\\colon M^n\\to \\mathbb{R}^{n+1}$</span></span></img></span></span> that admit non-trivial deformations preserving the Moebius metric. For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$n\\geq 5$</span></span></img></span></span>, the classification was completed by the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f\\colon M^n\\to \\mathbb{R}^m$</span></span></img></span></span> into Euclidean space as a one-parameter family of immersions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$f_t\\colon M^n\\to \\mathbb{R}^m$</span></span></img></span></span>, with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$t\\in (-\\epsilon, \\epsilon)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$f_0=f$</span></span></img></span></span>, such that the Moebius metrics determined by <span>f<span>t</span></span> coincide up to the first order. Then we characterize isometric immersions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$f\\colon M^n\\to \\mathbb{R}^m$</span></span></img></span></span> of arbitrary codimension that admit a non-trivial infinitesimal Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such characterization to classify the umbilic-free Euclidean hypersurfaces of dimension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$n\\geq 5$</span></span></img></span></span> that admit non-trivial infinitesimal Moebius variations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091523000792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces Abstract Image$f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. For Abstract Image$n\geq 5$, the classification was completed by the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion Abstract Image$f\colon M^n\to \mathbb{R}^m$ into Euclidean space as a one-parameter family of immersions Abstract Image$f_t\colon M^n\to \mathbb{R}^m$, with Abstract Image$t\in (-\epsilon, \epsilon)$ and Abstract Image$f_0=f$, such that the Moebius metrics determined by ft coincide up to the first order. Then we characterize isometric immersions Abstract Image$f\colon M^n\to \mathbb{R}^m$ of arbitrary codimension that admit a non-trivial infinitesimal Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such characterization to classify the umbilic-free Euclidean hypersurfaces of dimension Abstract Image$n\geq 5$ that admit non-trivial infinitesimal Moebius variations.

分享
查看原文
无限莫比斯可弯曲超曲面
李、马和王在[13]中提供了所谓莫比乌斯可变形超曲面的部分分类,即允许保留莫比乌斯度量的非三维变形的无脐欧几里得超曲面 $f\colon M^n\to \mathbb{R}^{n+1}$。对于 $n\geq 5$,作者在 [12] 中完成了分类。在本文中,我们得到了该分类的无穷小版本。也就是说,我们引入了无脐浸入 $f\colon M^n\to \mathbb{R}^m$ 到欧几里得空间的无穷小莫比乌斯变化的概念,作为浸入 $f_t\colon M^n\to \mathbb{R}^m$ 的单参数族、其中 $t\in (-\epsilon, \epsilon)$和 $f_0=f$,这样由 ft 决定的莫比乌斯度量在一阶以内是重合的。然后,我们描述了任意编维度的等距沉浸 $f\colon M^n\to \mathbb{R}^m$ 的特征,这些等距沉浸在那些允许非三维无穷小莫比乌斯变化的等距沉浸中允许非三维共形无穷小变化,并利用这种特征来对允许非三维无穷小莫比乌斯变化的维度为 $n\geq 5$ 的无脐欧几里得超曲面进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信