{"title":"Infinitesimally Moebius bendable hypersurfaces","authors":"M.I. Jimenez, R. Tojeiro","doi":"10.1017/s0013091523000792","DOIUrl":null,"url":null,"abstract":"<p>Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$f\\colon M^n\\to \\mathbb{R}^{n+1}$</span></span></img></span></span> that admit non-trivial deformations preserving the Moebius metric. For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$n\\geq 5$</span></span></img></span></span>, the classification was completed by the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f\\colon M^n\\to \\mathbb{R}^m$</span></span></img></span></span> into Euclidean space as a one-parameter family of immersions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$f_t\\colon M^n\\to \\mathbb{R}^m$</span></span></img></span></span>, with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$t\\in (-\\epsilon, \\epsilon)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$f_0=f$</span></span></img></span></span>, such that the Moebius metrics determined by <span>f<span>t</span></span> coincide up to the first order. Then we characterize isometric immersions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$f\\colon M^n\\to \\mathbb{R}^m$</span></span></img></span></span> of arbitrary codimension that admit a non-trivial infinitesimal Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such characterization to classify the umbilic-free Euclidean hypersurfaces of dimension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110125208839-0507:S0013091523000792:S0013091523000792_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$n\\geq 5$</span></span></img></span></span> that admit non-trivial infinitesimal Moebius variations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091523000792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. For $n\geq 5$, the classification was completed by the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion $f\colon M^n\to \mathbb{R}^m$ into Euclidean space as a one-parameter family of immersions $f_t\colon M^n\to \mathbb{R}^m$, with $t\in (-\epsilon, \epsilon)$ and $f_0=f$, such that the Moebius metrics determined by ft coincide up to the first order. Then we characterize isometric immersions $f\colon M^n\to \mathbb{R}^m$ of arbitrary codimension that admit a non-trivial infinitesimal Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such characterization to classify the umbilic-free Euclidean hypersurfaces of dimension $n\geq 5$ that admit non-trivial infinitesimal Moebius variations.