{"title":"The Schwarzian norm estimates for Janowski convex functions","authors":"Md Firoz Ali, Sanjit Pal","doi":"10.1017/s0013091524000014","DOIUrl":null,"url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline1.png\" /> <jats:tex-math>$-1\\leq B \\lt A\\leq 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline2.png\" /> <jats:tex-math>$\\mathcal{C}(A,B)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the class of normalized Janowski convex functions defined in the unit disk <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline3.png\" /> <jats:tex-math>$\\mathbb{D}:=\\{z\\in\\mathbb{C}:|z| \\lt 1\\}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> that satisfy the subordination relation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline4.png\" /> <jats:tex-math>$1+zf''(z)/f'(z)\\prec (1+Az)/(1+Bz)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the present article, we determine the sharp estimate of the Schwarzian norm for functions in the class <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline5.png\" /> <jats:tex-math>$\\mathcal{C}(A,B)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The Dieudonné’s lemma which gives the exact region of variability for derivatives at a point of bounded functions, plays the key role in this study, and we also use this lemma to construct the extremal functions for the sharpness by a new method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For $-1\leq B \lt A\leq 1$, let $\mathcal{C}(A,B)$ denote the class of normalized Janowski convex functions defined in the unit disk $\mathbb{D}:=\{z\in\mathbb{C}:|z| \lt 1\}$ that satisfy the subordination relation $1+zf''(z)/f'(z)\prec (1+Az)/(1+Bz)$. In the present article, we determine the sharp estimate of the Schwarzian norm for functions in the class $\mathcal{C}(A,B)$. The Dieudonné’s lemma which gives the exact region of variability for derivatives at a point of bounded functions, plays the key role in this study, and we also use this lemma to construct the extremal functions for the sharpness by a new method.