The Schwarzian norm estimates for Janowski convex functions

Pub Date : 2024-02-12 DOI:10.1017/s0013091524000014
Md Firoz Ali, Sanjit Pal
{"title":"The Schwarzian norm estimates for Janowski convex functions","authors":"Md Firoz Ali, Sanjit Pal","doi":"10.1017/s0013091524000014","DOIUrl":null,"url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline1.png\" /> <jats:tex-math>$-1\\leq B \\lt A\\leq 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline2.png\" /> <jats:tex-math>$\\mathcal{C}(A,B)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the class of normalized Janowski convex functions defined in the unit disk <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline3.png\" /> <jats:tex-math>$\\mathbb{D}:=\\{z\\in\\mathbb{C}:|z| \\lt 1\\}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> that satisfy the subordination relation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline4.png\" /> <jats:tex-math>$1+zf''(z)/f'(z)\\prec (1+Az)/(1+Bz)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the present article, we determine the sharp estimate of the Schwarzian norm for functions in the class <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000014_inline5.png\" /> <jats:tex-math>$\\mathcal{C}(A,B)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The Dieudonné’s lemma which gives the exact region of variability for derivatives at a point of bounded functions, plays the key role in this study, and we also use this lemma to construct the extremal functions for the sharpness by a new method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For $-1\leq B \lt A\leq 1$ , let $\mathcal{C}(A,B)$ denote the class of normalized Janowski convex functions defined in the unit disk $\mathbb{D}:=\{z\in\mathbb{C}:|z| \lt 1\}$ that satisfy the subordination relation $1+zf''(z)/f'(z)\prec (1+Az)/(1+Bz)$ . In the present article, we determine the sharp estimate of the Schwarzian norm for functions in the class $\mathcal{C}(A,B)$ . The Dieudonné’s lemma which gives the exact region of variability for derivatives at a point of bounded functions, plays the key role in this study, and we also use this lemma to construct the extremal functions for the sharpness by a new method.
分享
查看原文
扬诺夫斯基凸函数的施瓦兹规范估计值
对于$-1/leq B \lt A\leq 1$,让$\mathcal{C}(A,B)$表示定义在单位盘$\mathbb{D}:=\{z\in\mathbb{C}:|z|\lt 1\}$中满足从属关系$1+zf''(z)/f'(z)\prec (1+Az)/(1+Bz)$ 的归一化扬诺夫斯基凸函数类。在本文中,我们确定了类$\mathcal{C}(A,B)$ 中函数的施瓦兹规范的尖锐估计值。Dieudonné Lemma 给出了有界函数在某一点上导数的精确可变区域,它在本研究中发挥了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信