PhytopathologyPub Date : 2024-09-16DOI: 10.1094/PHYTO-07-24-0206-R
Robbert van Himbeeck, Eline Laura Binnebösz, Deisy Amora, Michele Gottardi, Jaap-Jan Willig, Stefan Geisen, Johannes Helder
{"title":"Non-invasive, pre-symptomatic detection of potato cyst nematode infection in tomato using chlorophyll fluorescence analysis.","authors":"Robbert van Himbeeck, Eline Laura Binnebösz, Deisy Amora, Michele Gottardi, Jaap-Jan Willig, Stefan Geisen, Johannes Helder","doi":"10.1094/PHYTO-07-24-0206-R","DOIUrl":"https://doi.org/10.1094/PHYTO-07-24-0206-R","url":null,"abstract":"<p><p>Potato cyst nematodes (PCN) are notorious pathogens in all major potato production areas worldwide. Mainly due to the low mobility of this soil pathogen, PCN infestations are mostly observed as patches ('foci') that only cover a fraction of the acreage. In-field pre-symptomatic localization of this pathogen is valuable as it would allow for the localized application of control measures. Although the mapping of foci is technically feasible, it is unpractical as it would take the analysis of numerous soil samples. We investigated whether chlorophyll fluorescence (Chl-F) could be suitable as a rapid, non-destructive method for early PCN detection. To this end, the impact of four <i>Globodera pallida</i> densities on the Chl-F of tomato was investigated in a phenotyping greenhouse for 26 days. Furthermore, classical plant performance indicators biomass and root surface area were compared with Chl-F. Thermal dissipation ('NPQ_Lss') and actual photosynthetic rate ('QY_Lss') responded at 1 DPI, while QY_Lss was most sensitive to low PCN infection levels. Chl-F parameters responded more readily to PCN infection than biomass and root surface area. The efficiency of photosystem II (QY_max) and the potential activity of photosystem II (Fv/Fo) initially increased at low PCN infection levels, whereas a sharp decrease was observed at higher infestation levels. Hence, our data suggest that low PCN levels promoted plant performance before becoming detrimental at higher levels. While Chl-F allowed for early and sensitive PCN detection, it remains to be investigated whether these signals can be distinguished from those produced by other below-ground stressors in the field.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhytopathologyPub Date : 2024-09-12DOI: 10.1094/phyto-10-23-0366-ia
Jaime Cubero,Pablo J Zarco-Tejada,Sara Cuesta-Morrondo,Ana Palacio-Bielsa,Juan A Navas-Cortés,Pilar Sabuquillo,Tomás Poblete,Blanca B Landa,Jerson Garita-Cambronero
{"title":"New Approaches to Plant Pathogen Detection and Disease Diagnosis.","authors":"Jaime Cubero,Pablo J Zarco-Tejada,Sara Cuesta-Morrondo,Ana Palacio-Bielsa,Juan A Navas-Cortés,Pilar Sabuquillo,Tomás Poblete,Blanca B Landa,Jerson Garita-Cambronero","doi":"10.1094/phyto-10-23-0366-ia","DOIUrl":"https://doi.org/10.1094/phyto-10-23-0366-ia","url":null,"abstract":"Detecting plant pathogens and diagnosing diseases are critical components of successful pest management. These key areas have undergone significant advancements driven by breakthroughs in molecular biology and remote sensing technologies within the realm of precision agriculture. Notably, nucleic acid amplification techniques, with recent emphasis on sequencing procedures, particularly next-generation sequencing, have enabled improved DNA or RNA amplification detection protocols that now enable previously unthinkable strategies aimed at dissecting plant microbiota, including the disease-causing components. Simultaneously, the domain of remote sensing has seen the emergence of cutting-edge imaging sensor technologies and the integration of powerful computational tools, such as machine learning. These innovations enable spectral analysis of foliar symptoms and specific pathogen-induced alterations, making imaging spectroscopy and thermal imaging fundamental tools for large-scale disease surveillance and monitoring. These technologies contribute significantly to understanding the temporal and spatial dynamics of plant diseases.","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":"44 1","pages":"PHYTO10230366IA"},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142220025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhytopathologyPub Date : 2024-09-08DOI: 10.1094/PHYTO-11-23-0432-R
Kathleen Kanaley, David B Combs, Angela Paul, Yu Jiang, Terry Bates, Kaitlin M Gold
{"title":"Assessing the Capacity of High-resolution Commercial Satellite Imagery for Grapevine Downy Mildew Detection and Surveillance in New York state.","authors":"Kathleen Kanaley, David B Combs, Angela Paul, Yu Jiang, Terry Bates, Kaitlin M Gold","doi":"10.1094/PHYTO-11-23-0432-R","DOIUrl":"https://doi.org/10.1094/PHYTO-11-23-0432-R","url":null,"abstract":"<p><p>Grapevine downy mildew (GDM), caused by the oomycete <i>Plasmopara viticola</i>, can cause 100% yield loss and vine death under conducive conditions. High resolution multispectral satellite platforms offer the opportunity to track rapidly spreading diseases like GDM over large, heterogeneous fields. Here, we investigate the capacity of PlanetScope (3 m) and SkySat (50 cm) imagery for season-long GDM detection and surveillance. A team of trained scouts rated GDM severity and incidence at a research vineyard in Geneva, NY, USA from June to August of 2020, 2021, and 2022. Satellite imagery acquired within 72 hours of scouting was processed to extract single-band reflectance and vegetation indices (VIs). Random forest models trained on spectral bands and VIs from both image datasets could classify areas of high and low GDM incidence and severity with maximum accuracies of 0.85 (SkySat) and 0.92 (PlanetScope). However, we did not observe significant differences between VIs of high and low damage classes until late July-early August. We identified cloud cover, image co-registration, and low spectral resolution as key challenges to operationalizing satellite-based GDM surveillance. This work establishes the capacity of spaceborne multispectral sensors to detect late-stage GDM and outlines steps towards incorporating satellite remote sensing in grapevine disease surveillance systems.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhytopathologyPub Date : 2024-09-05DOI: 10.1094/PHYTO-04-24-0140-R
Shilu Dahal, Sophie Alvarez, Samantha J Balboa, Leslie M Hicks, Clemencia M Rojas
{"title":"Defining the secondary metabolites in the <i>Pseudomonas protegens</i> PBL3 secretome with antagonistic activity against <i>Burkholderia glumae</i>.","authors":"Shilu Dahal, Sophie Alvarez, Samantha J Balboa, Leslie M Hicks, Clemencia M Rojas","doi":"10.1094/PHYTO-04-24-0140-R","DOIUrl":"https://doi.org/10.1094/PHYTO-04-24-0140-R","url":null,"abstract":"<p><p>Rice production worldwide is threatened by the disease Bacterial Panicle Blight (BPB) caused by <i>Burkholderia glumae</i>. Despite the threat, resources to control this disease such as completely resistant cultivars or effective chemical methods are still lacking. However, the need to control this disease has paved the way to explore biologically based approaches harnessing the antimicrobial activities of environmental bacteria. Previously, the bacterium <i>Pseudomonas protegens</i> PBL3 was identified as a potential biological control agent against <i>B. glumae</i> due to its antimicrobial activity against <i>B. glumae</i>. Such antimicrobial activity in vitro and in planta was associated with the <i>P. protegens</i> PBL3 bacteria-free secreted fraction (secretome), although the specific molecules responsible for this activity have remained elusive. In this work, we advance the characterization of the <i>P. protegens</i> PBL3 secretome, by evaluating the antimicrobial activity in vitro of selected secondary metabolites predicted by the <i>P. protegens</i> PBL3 genomic sequence against <i>B. glumae</i>. In addition, using Reversed Phase Liquid Chromatography Tandem Mass Spectrometry (RPLC-MS/MS), of the <i>P. protegens</i> PBL3 secretome, enabled us to successfully detect and quantify Pyoluteorin, 2,4-diacetylphloroglucinol (2,4-DAPG) and Pyochelin. Among those, Pyoluteorin and 2,4-DAPG reduced the growth of <i>B. glumae</i> in vitro along with reducing the symptoms of BPB and bacterial growth in planta, suggesting that these compounds could be effective as biopesticides to mitigate BPB.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhytopathologyPub Date : 2024-09-01Epub Date: 2024-09-12DOI: 10.1094/PHYTO-04-24-0138-R
Rebekah A Frampton, Louise S Shuey, Charles C David, Georgia M Pringle, Falk Kalamorz, Geoff S Pegg, David Chagné, Grant R Smith
{"title":"Analysis of Plant and Fungal Transcripts from Resistant and Susceptible Phenotypes of <i>Leptospermum scoparium</i> Challenged by <i>Austropuccinia psidii</i>.","authors":"Rebekah A Frampton, Louise S Shuey, Charles C David, Georgia M Pringle, Falk Kalamorz, Geoff S Pegg, David Chagné, Grant R Smith","doi":"10.1094/PHYTO-04-24-0138-R","DOIUrl":"10.1094/PHYTO-04-24-0138-R","url":null,"abstract":"<p><p><i>Austropuccinia psidii</i> is the causal pathogen of myrtle rust disease of Myrtaceae. To gain understanding of the initial infection process, gene expression in germinating <i>A. psidii</i> urediniospores and in <i>Leptospermum scoparium</i>-inoculated leaves were investigated via analyses of RNA sequencing samples taken 24 and 48 h postinoculation (hpi). Principal component analyses of transformed transcript count data revealed differential gene expression between the uninoculated <i>L. scoparium</i> control plants that correlated with the three plant leaf resistance phenotypes (immunity, hypersensitive response, and susceptibility). Gene expression in the immune resistant plants did not significantly change in response to fungal inoculation, whereas susceptible plants showed differential expression of genes in response to fungal challenge. A putative disease resistance gene, jg24539.t1, was identified in the <i>L. scoparium</i> hypersensitive response phenotype family. Expression of this gene may be associated with the phenotype and could be important for further understanding the plant hypersensitive response to <i>A. psidii</i> challenge. Differential expression of pathogen genes was found between samples taken 24 and 48 hpi, but there were no significant differences in pathogen gene expression that were associated with the three different plant leaf resistance phenotypes. There was a significant decrease in the abundance of fungal transcripts encoding three putative effectors and a putative carbohydrate-active enzyme between 24 and 48 hpi, suggesting that the encoded proteins are important during the initial phase of infection. These transcripts, or their translated proteins, may be potential targets to impede the early phases of fungal infection by this wide-host-range obligate biotrophic basidiomycete.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2121-2130"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhytopathologyPub Date : 2024-09-01Epub Date: 2024-09-09DOI: 10.1094/PHYTO-12-23-0498-R
Liangliang Zhu, Lin Tang, Xiangrong Tian, Yayuan Bai, Lili Huang
{"title":"Two Polyketide Synthase Genes, <i>VpPKS10</i> and <i>VpPKS33</i>, Regulated by VpLaeA Are Essential to the Virulence of <i>Valsa pyri</i>.","authors":"Liangliang Zhu, Lin Tang, Xiangrong Tian, Yayuan Bai, Lili Huang","doi":"10.1094/PHYTO-12-23-0498-R","DOIUrl":"10.1094/PHYTO-12-23-0498-R","url":null,"abstract":"<p><p><i>Valsa pyri</i>, the causal agent of pear canker disease, typically induces cankers on the bark of infected trees and even leads to tree mortality. Secondary metabolites produced by pathogenic fungi play a crucial role in the pathogenic process. In this study, secondary metabolic regulator VpLaeA was identified in <i>V. pyri</i>. <i>VpLaeA</i> was found to strongly affect the pathogenicity, fruiting body formation, and toxicity of secondary metabolites of <i>V. pyri</i>. Additionally, <i>VpLaeA</i> was found to be required for the response of <i>V. pyri</i> to some abiotic stresses. Transcriptome data analysis revealed that many of differentially expressed genes were involved in the secondary metabolite biosynthesis. Among them, about one third of secondary metabolite biosynthesis core genes were regulated by <i>VpLaeA</i> at different periods. Seven differentially expressed secondary metabolite biosynthesis core genes (<i>VpPKS9</i>, <i>VpPKS10</i>, <i>VpPKS33</i>, <i>VpNRPS6</i>, <i>VpNRPS7</i>, <i>VpNRPS16</i>, and <i>VpNRPS17</i>) were selected for knockout. Two modular polyketide synthase genes (<i>VpPKS10</i> and <i>VpPKS33</i>) that were closely related to the virulence of <i>V. pyri</i> from the above seven genes were identified. Notably, <i>VpPKS10</i> and <i>VpPKS33</i> also affected the production of fruiting body of <i>V. pyri</i> but did not participate in the resistance of <i>V. pyri</i> to abiotic stresses. Overall, this study demonstrates the multifaceted biological functions of <i>VpLaeA</i> in <i>V. pyri</i> and identifies two toxicity-associated polyketide synthase genes in <i>Valsa</i> species fungi for the first time.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2071-2083"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhytopathologyPub Date : 2024-09-01Epub Date: 2024-09-13DOI: 10.1094/PHYTO-02-24-0056-KC
Yassine Bouhouch, Qassim Esmaeel, Nicolas Richet, Essaïd Aït Barka, Aurélie Backes, Luiz Angelo Steffenel, Majida Hafidi, Cédric Jacquard, Lisa Sanchez
{"title":"Deep Learning-Based Barley Disease Quantification for Sustainable Crop Production.","authors":"Yassine Bouhouch, Qassim Esmaeel, Nicolas Richet, Essaïd Aït Barka, Aurélie Backes, Luiz Angelo Steffenel, Majida Hafidi, Cédric Jacquard, Lisa Sanchez","doi":"10.1094/PHYTO-02-24-0056-KC","DOIUrl":"10.1094/PHYTO-02-24-0056-KC","url":null,"abstract":"<p><p>Net blotch disease caused by <i>Drechslera teres</i> is a major fungal disease that affects barley (<i>Hordeum vulgare</i>) plants and can result in significant crop losses. In this study, we developed a deep learning model to quantify net blotch disease symptoms on different days postinfection on seedling leaves using Cascade R-CNN (region-based convolutional neural network) and U-Net (a convolutional neural network) architectures. We used a dataset of barley leaf images with annotations of net blotch disease to train and evaluate the model. The model achieved an accuracy of 95% for Cascade R-CNN in net blotch disease detection and a Jaccard index score of 0.99, indicating high accuracy in disease quantification and location. The combination of Cascade R-CNN and U-Net architectures improved the detection of small and irregularly shaped lesions in the images at 4 days postinfection, leading to better disease quantification. To validate the model developed, we compared the results obtained by automated measurement with a classical method (necrosis diameter measurement) and a pathogen detection by real-time PCR. The proposed deep learning model could be used in automated systems for disease quantification and to screen the efficacy of potential biocontrol agents to protect against disease.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2045-2054"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhytopathologyPub Date : 2024-09-01Epub Date: 2024-08-14DOI: 10.1094/PHYTO-03-24-0105-PER
Peter Balint-Kurti, Jerald Pataky
{"title":"Reconsidering the Lessons Learned from the 1970 Southern Corn Leaf Blight Epidemic.","authors":"Peter Balint-Kurti, Jerald Pataky","doi":"10.1094/PHYTO-03-24-0105-PER","DOIUrl":"10.1094/PHYTO-03-24-0105-PER","url":null,"abstract":"<p><p>The southern corn leaf blight epidemic of 1970 caused estimated losses of about 16% for the U.S. corn crop, equivalent to about $8 billion in current terms. The epidemic was caused by the prevalence of Texas male sterile cytoplasm (<i>cms</i>-T), used to produce most of the hybrid corn seed planted that year, combined with the emergence of a novel race of the fungus <i>Cochliobolus heterostrophus</i> that was exquisitely virulent on <i>cms</i>-T corn. Remarkably, the epidemic lasted just a single year. This episode has often been portrayed in the literature and textbooks over the last 50 years as a catastrophic mistake perpetrated by corn breeders and seed companies of the time who did not understand or account for the dangers of crop genetic uniformity. In this perspective article, we aim to present an alternative interpretation of these events. First, we contend that, rather than being caused by a grievous error on the part of the corn breeding and seed industry, this epidemic was a particularly unfortunate, unusual, and unlucky consequence of a technological advancement intended to improve the efficiency of corn seed production for America's farmers. Second, we tell the story of the resolution of the epidemic as an example of timely, meticulously applied research in the public sector for the public good.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2007-2016"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhytopathologyPub Date : 2024-09-01Epub Date: 2024-09-12DOI: 10.1094/PHYTO-05-24-0171-SC
Nabil Killiny, Shelley E Jones
{"title":"A Transmission Assay of '<i>Candidatus</i> Liberibacter asiaticus' Using Citrus Phloem Sap and Topical Feeding to Its Insect Vector, <i>Diaphorina citri</i>.","authors":"Nabil Killiny, Shelley E Jones","doi":"10.1094/PHYTO-05-24-0171-SC","DOIUrl":"10.1094/PHYTO-05-24-0171-SC","url":null,"abstract":"<p><p>'<i>Candidatus</i> Liberibacter asiaticus', the putative causal agent of citrus greening disease, is transmitted by the Asian citrus psyllid, <i>Diaphorina citri</i>, in a propagative, circulative, and persistent manner. Unfortunately, '<i>Ca</i>. L. asiaticus' is not yet available in pure culture to carry out Koch's postulates and to confirm its etiology. When a pure culture is available, an assay to test its infectivity in both the insect vector and the plant host will be crucial. Herein, we described a transmission assay based on the use of phloem sap extracted from infected citrus plants and topical feeding to <i>D. citri</i> nymphs. Phloem sap was collected by centrifugation, diluted with 0.1 M phosphate buffer pH 7.4 containing 20% (wt/vol) sucrose and 0.1% ascorbic acid (wt/vol) as an antioxidant, and delivered to third through fifth instar nymphs by placing droplets on the mouthparts. Nymphs unfolded the stylets and acquired the phloem sap containing the bacterial pathogen. Nymphs were then placed onto <i>Citrus macrophylla</i> seedlings (10 nymphs per seedling) for an inoculation period of 2 weeks. A transmission rate of up to 80% was recorded at 6 months postinoculation. The method could be a powerful tool to test the transmissibility of the bacterial pathogen after various treatments to reduce the viability of the bacteria or to block its transmission. In addition, it might be a potent assay to achieve Koch's postulates if a pure culture of '<i>Ca.</i> L. asiaticus' becomes available.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2176-2181"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}