Preparative Biochemistry & Biotechnology最新文献

筛选
英文 中文
Preparation of esculin acetates through transesterification reaction catalyzed by Novozyme 435® and their Purification followed by NMR characterization. 在 Novozyme 435® 催化下通过酯交换反应制备乙酸酯,并对其进行纯化和核磁共振表征。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-10-31 DOI: 10.1080/10826068.2024.2415961
Maryna Schuenck Knupp, Camila Rodrigues Adão Malafaia, Patrícia Homobono Brito de Moura, Denise Maria Guimarães Freire, Luzineide Wanderley Tinoco, Shaft Corrêa Pinto, Michelle Frazão Muzitano, Ivana Correa Ramos Leal
{"title":"Preparation of esculin acetates through transesterification reaction catalyzed by Novozyme 435<sup>®</sup> and their Purification followed by NMR characterization.","authors":"Maryna Schuenck Knupp, Camila Rodrigues Adão Malafaia, Patrícia Homobono Brito de Moura, Denise Maria Guimarães Freire, Luzineide Wanderley Tinoco, Shaft Corrêa Pinto, Michelle Frazão Muzitano, Ivana Correa Ramos Leal","doi":"10.1080/10826068.2024.2415961","DOIUrl":"10.1080/10826068.2024.2415961","url":null,"abstract":"<p><p>In this study, biocatalytic transesterification reaction using Novozyme 435<sup>®</sup> (N435) lipase was employed to enhance the hydrophobicity of esculin, aiming to improve its solubility for commercial applications and enhance its bioactivity and oral viability. The acylation reaction of esculin with vinyl acetate was conducted at 60 °C and 200 rpm for 24 h. After chromatographic and spectroscopic analysis, two products were identified: the first one was monoacylated at the 6'-OH position of the glucosyl moiety of esculin (T<sub>R</sub>: 10.3 min and <i>m/z</i> 382.93 [M + H]<sup>+</sup>), and the second one was diacylated at the 6'-OH and 3'-OH positions (T<sub>R</sub>: 13.0 min and <i>m/z</i> 424.93 [M + H]<sup>+</sup>). The latter was the major product, with a conversion rate of 53.550 ± 0.368%, while the monoacetylated one showed 8.715 ± 0.064%. Both products were isolated by high-speed counter-current chromatography (HSCCC) using a two-phase system HEMWat 1:9:1:9 and characterized by NMR. In this way, these results improve the practical application of esculin, through the obtention of esculin mono and diacetates by fast and efficient biocatalysis reaction.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"370-380"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium Virgibacillus dokdonensis VITP14. 一种中度嗜卤细菌 Virgibacillus dokdonensis VITP14 产生的外多糖的生产优化和抗氧化潜力。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-07-04 DOI: 10.1080/10826068.2024.2370879
Monic Andrew, Gurunathan Jayaraman
{"title":"Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium <i>Virgibacillus dokdonensis</i> VITP14.","authors":"Monic Andrew, Gurunathan Jayaraman","doi":"10.1080/10826068.2024.2370879","DOIUrl":"10.1080/10826068.2024.2370879","url":null,"abstract":"<p><p>This study aimed to enhance the extracellular polymeric substances (EPS) production of <i>Virgibacillus dokdonensis</i> VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, <i>V. dokdonensis</i> VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"112-130"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ethanol and 2-phenylethanol production by bee-isolated Meyerozyma caribbica strains. 蜜蜂分离的 Meyerozyma caribbica 菌株产生乙醇和 2-苯基乙醇。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-10-10 DOI: 10.1080/10826068.2024.2414094
Eduardo Dias Fenner, Stéfany Kell Bressan, Angela Alves Dos Santos, Anderson Giehl, Gabriel do Amaral Minussi, Elisa Amorim Amâncio Teixeira, Mariana da Costa Diniz, Larissa Werlang, Odinei Fogolari, Carlos Augusto Rosa, Helen Treichel, Liziara da Costa Cabrera, Sergio Luiz Alves Junior
{"title":"Ethanol and 2-phenylethanol production by bee-isolated <i>Meyerozyma caribbica</i> strains.","authors":"Eduardo Dias Fenner, Stéfany Kell Bressan, Angela Alves Dos Santos, Anderson Giehl, Gabriel do Amaral Minussi, Elisa Amorim Amâncio Teixeira, Mariana da Costa Diniz, Larissa Werlang, Odinei Fogolari, Carlos Augusto Rosa, Helen Treichel, Liziara da Costa Cabrera, Sergio Luiz Alves Junior","doi":"10.1080/10826068.2024.2414094","DOIUrl":"10.1080/10826068.2024.2414094","url":null,"abstract":"<p><p>Investigating the biotechnological potential of wild microorganisms is paramount for optimizing bioprocesses. Given this premise, we looked for yeasts in Brazilian native stingless bees, considering the recognized potential of pollinating insect-associated microorganisms for the production of volatile organic compounds (VOCs). Two yeast strains of the species <i>Meyerozyma caribbica</i> were isolated from bees <i>Scaptotrigona postica</i> and evaluated for their fermentative capacity. Both yeasts were capable of fermenting sucrose (the main sugar used in the Brazilian ethanol industry) with over 90% efficiency and yields of up to 0.504 g/g. Through an experimental design analysis (CCD), it was verified that the ethanol productivity of these yeasts can also benefit from high concentrations of sucrose and low pH values, desirable traits for microorganisms in this biofuel production. At the same time, CCD analyses also showed the great capacity of these <i>M. caribbica</i> strains to produce another alcohol of broad biotechnological interest, 2-phenylethanol. Interestingly, the statistical analyses demonstrated that greater production of this compound can occur at high sugar concentrations and low availability of nitrogen sources, which can be easily achieved using residual low-cost feedstocks. Thus, our results suggest that these <i>M. caribbica</i> strains may be efficiently used in both ethanol and 2-phenylethanol production.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"359-369"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. 蛋白酶是为医学、临床和制药服务的强大生化工具。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-06-22 DOI: 10.1080/10826068.2024.2364234
Ghadir A Jamal, Ehsan Jahangirian, Michael R Hamblin, Hamed Mirzaei, Hossein Tarrahimofrad, Neda Alikowsarzadeh
{"title":"Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical.","authors":"Ghadir A Jamal, Ehsan Jahangirian, Michael R Hamblin, Hamed Mirzaei, Hossein Tarrahimofrad, Neda Alikowsarzadeh","doi":"10.1080/10826068.2024.2364234","DOIUrl":"10.1080/10826068.2024.2364234","url":null,"abstract":"<p><p>Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, <i>in-vitro</i> model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-25"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of fermentation on the structures of yellow compounds in citrus pomace. 发酵对柑橘渣中黄色化合物结构的影响。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-06-10 DOI: 10.1080/10826068.2024.2362794
Dan-Dan Yang, Wen-Jie Li, Sheng-Jiao Lei, Hai-Yan Liu, Nong-Fei Ouyang, Jun-Dong Zhu
{"title":"Effects of fermentation on the structures of yellow compounds in citrus pomace.","authors":"Dan-Dan Yang, Wen-Jie Li, Sheng-Jiao Lei, Hai-Yan Liu, Nong-Fei Ouyang, Jun-Dong Zhu","doi":"10.1080/10826068.2024.2362794","DOIUrl":"10.1080/10826068.2024.2362794","url":null,"abstract":"<p><p>To enhance the stability and light resistance of the yellow compounds in citrus pomace, our study successfully isolated and purified five compounds using ultrasonic-assisted extraction and column chromatography. The identified compounds include methyl linoleate, (2-ethyl)hexyl phthalate, 1,3-distearoyl-2-oleoylglycerol, 6,6-ditetradecyl-6,7-dihydroxazepin-2(3H)-one, and n-octadeca-17-enoic acid. The monomers extracted from fresh pomace, compounds 1 and 2, exhibit structural similarities to flavonoids and carotenoids. In contrast, the polymers isolated from fermented pomace, compounds 3, 4, and 5, share structural units with the fresh pomace compounds, indicating the transformation to stable polymeric forms. This suggests that the microbial fermentation process not only enhances the value of citrus pomace, but also provides a promising pathway for the synthesis of natural antioxidant yellow pigments with far-reaching theoretical and practical significance.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"67-74"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation and identification of a salt-tolerant Coelastrum sp. and exploration of its potential for biodiesel production. 分离和鉴定一种耐盐鹅掌霉菌并探索其生产生物柴油的潜力。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-09-24 DOI: 10.1080/10826068.2024.2405941
Jing Xu, Han Wang, Jixin Liu, Jingping Ge, Yimeng Lin, Wenxiang Ping
{"title":"Isolation and identification of a salt-tolerant <i>Coelastrum</i> sp. and exploration of its potential for biodiesel production.","authors":"Jing Xu, Han Wang, Jixin Liu, Jingping Ge, Yimeng Lin, Wenxiang Ping","doi":"10.1080/10826068.2024.2405941","DOIUrl":"10.1080/10826068.2024.2405941","url":null,"abstract":"<p><p>Given the escalating demand for renewable biofuels amidst the continual consumption of fossil energy, the exploration and identification of microalgal strains for biodiesel production have become crucial. In this study, a microalgal strain named HDMA-12 was isolated from Lake Chenjiadayuan in China to evaluate its biodiesel potential. Phylogenetic analysis of its internal transcribed spacer sequences revealed HDMA-12 as a new molecular record in the genus <i>Coelastrum</i>. When cultivated in BG11 basal medium, HDMA-12 achieved a biomass of 635.7 mg L<sup>-1</sup> and a lipid content of 26.4%. Furthermore, the fatty acid methyl ester profile of HDMA-12 exhibited favorable combustion characteristics. Subjected to 200 mM NaCl stress, HDMA-12 reached its maximum biomass of 751.5 mg L<sup>-1</sup> and a lipid content of 28.9%. These findings indicate the promising prospects of HDMA-12 as a promising microalgal strain for further advancements in biodiesel production.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"331-340"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced production of yellow fever virus through tailored culture media optimization. 通过量身定制的培养基优化提高黄热病病毒的产量。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-06-26 DOI: 10.1080/10826068.2024.2366990
Hareesh Reddy Narreddy, Ratna Prakash Kondapalli, T C Venkateswarulu
{"title":"Enhanced production of yellow fever virus through tailored culture media optimization.","authors":"Hareesh Reddy Narreddy, Ratna Prakash Kondapalli, T C Venkateswarulu","doi":"10.1080/10826068.2024.2366990","DOIUrl":"10.1080/10826068.2024.2366990","url":null,"abstract":"<p><p>In the present study, an initial screening was conducted using 12 types of cell culture media, and four media with the best performance were selected for further study. The optimization of four media blend for YFV production was evaluated using an Augmented simplex centroid mixture design. Among all the different models that were investigated, the quadratic model was found to be the most appropriate model for exploring mixture design. It was found that M10 exhibited the greatest impact on YFV production, followed by M9, M4, and M1. The utilization of M1 and M4 media individually yielded higher compared to their blends with other media. The YFV titers were reduced when M1 media was combined with other media. The utilization of M9 and M10 media in combination resulted a higher viral yield compared to their respective concentrations. The optimal ratio for achieving a higher titer of YFV from primary CEFs was found to be approximately 38:62, with M9 and M10 being the most favorable media blend. The use of a media mixture led to a significant increase of virus titer up to 2.6 × 10<sup>8</sup> PFU/ml or 2 log titer yield, which is equivalent to 1.92 × 10<sup>5</sup> doses, without any changes to growth conditions or other process factors. This study concluded that the utilization of a mixture design could be efficiently employed to choose the optimal combination of media blends for enhanced viral production from cell culture.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"75-80"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellulase production by Aspergillus fumigatus A4112 and the potential use of the enzyme in cooperation with surfactant to enhance floating oil recovery and methane production from palm oil mill effluent. 烟曲霉 A4112 产生的纤维素酶以及该酶与表面活性剂合作用于提高棕榈油厂污水的浮油回收率和甲烷产量的潜力。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-06-22 DOI: 10.1080/10826068.2024.2368627
Wiyada Khangkhachit, Wasana Suyotha, Sompong O-Thong, Poonsuk Prasertsan
{"title":"Cellulase production by <i>Aspergillus fumigatus</i> A4112 and the potential use of the enzyme in cooperation with surfactant to enhance floating oil recovery and methane production from palm oil mill effluent.","authors":"Wiyada Khangkhachit, Wasana Suyotha, Sompong O-Thong, Poonsuk Prasertsan","doi":"10.1080/10826068.2024.2368627","DOIUrl":"10.1080/10826068.2024.2368627","url":null,"abstract":"<p><p>This research performed cellulase production by <i>Aspergillus fumigatus</i> A4112 and evaluated its potential use in palm oil mill effluent (POME) hydrolysis to recover oil simultaneously with the generation of fermentable sugar useful for biofuel production under non-sterilized conditions. Empty fruit bunch (EFB) without pretreatment was used as carbon source. The combination of nitrogen sources facilitated CMCase production. The maximum activity (3.27 U/mL) was obtained by 1.0 g/L peptone and 1.5 g/L (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> and 20 g/L EFB at 40 °C for 7 days. High level of FPase activity (39.51 U/mL) was also obtained. Interestingly, the enzyme retained its cellulase activities more than 60% at ambient temperature over 15 days. In enzymatic hydrolysis, Triton X-100 was an effective surfactant to increase total oil recovery in the floating form. High yield of reducing sugar (50.13 g/L) and 21% (v/v) of floating oil was recoverable at 65 °C for 48 h. Methane content of the raw POME increased from 41.49 to 64.94% by using de-oiled POME hydrolysate which was higher than using the POME hydrolysate (59.82%). The results demonstrate the feasibility of the constructed process for oil recovery coupled with a subsequent step for methane yield enhancement in biogas production process that benefits the palm oil industry.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"100-111"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimicrobial peptides (AMPs) from microalgae as an alternative to conventional antibiotics in aquaculture. 将微藻中的抗菌肽(AMPs)作为水产养殖中传统抗生素的替代品。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-07-06 DOI: 10.1080/10826068.2024.2365357
Camila A Vasquez-Moscoso, Juan Antonio Ramírez Merlano, Alfredo Olivera Gálvez, Daniela Volcan Almeida
{"title":"Antimicrobial peptides (AMPs) from microalgae as an alternative to conventional antibiotics in aquaculture.","authors":"Camila A Vasquez-Moscoso, Juan Antonio Ramírez Merlano, Alfredo Olivera Gálvez, Daniela Volcan Almeida","doi":"10.1080/10826068.2024.2365357","DOIUrl":"10.1080/10826068.2024.2365357","url":null,"abstract":"<p><p>The excessive use of conventional antibiotics has resulted in significant aquatic pollution and a concerning surge in drug-resistant bacteria. Efforts have been consolidated to explore and develop environmentally friendly antimicrobial alternatives to mitigate the imminent threat posed by multi-resistant pathogens. Antimicrobial peptides (AMPs) have gained prominence due to their low propensity to induce bacterial resistance, attributed to their multiple mechanisms of action and synergistic effects. Microalgae, particularly cyanobacteria, have emerged as promising alternatives with antibiotic potential to address these challenges. The aim of this review is to present some AMPs extracted from microalgae, emphasizing their activity against common pathogens and elucidating their mechanisms of action, as well as their potential application in the aquaculture industry. Likewise, the biosynthesis, advantages and disadvantages of the use of AMPs are described. Currently, biotechnology tolls are used to enhance the action of these peptides, such as genetically modified microalgae and recombinant proteins. Cyanobacteria are also mentioned as major producers of peptides, among them, the genus <i>Lyngbya</i> is described as the most important producer of bioactive peptides with potential therapeutic use. The majority of cyanobacterial AMPs are of the cyclic type, meaning that they have cysteine and disulfide bridges, thanks to this, their greater antimicrobial activity and selectivity. Likewise, we found that large hydrophobic aromatic amino acid residues increase specificity, and improve antibacterial efficacy. However, based on the results of this review, it is possible to highlight that while microalgae show potential as a source of AMPs, further research in this field is necessary to achieve safe and competitive production. Therefore, the data presented here can aid in the selection of microalgal species, peptide structures, and target bacteria, with the goal of establishing biotechnological platforms for aquaculture applications.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"26-35"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soluble and insoluble expression of recombinant human interleukin-2 protein using pET expression vector in Escherichia coli. 使用 pET 表达载体在大肠杆菌中可溶和不可溶地表达重组人白细胞介素-2 蛋白。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-06-02 DOI: 10.1080/10826068.2024.2361146
Atif Ahmed, Nao Akusa Fujimura, Saad Tahir, Muhammad Akram, Zaheer Abbas, Maira Riaz, Ali Raza, Rabia Abbas, Nadeem Ahmed
{"title":"Soluble and insoluble expression of recombinant human interleukin-2 protein using pET expression vector in <i>Escherichia coli</i>.","authors":"Atif Ahmed, Nao Akusa Fujimura, Saad Tahir, Muhammad Akram, Zaheer Abbas, Maira Riaz, Ali Raza, Rabia Abbas, Nadeem Ahmed","doi":"10.1080/10826068.2024.2361146","DOIUrl":"10.1080/10826068.2024.2361146","url":null,"abstract":"<p><p>Interleukin-2 has emerged as a potent protein-based drug to treat various cancers, AIDS, and autoimmune diseases. Despite its immense requirement, the production procedures are inefficient to meet the demand. Therefore, efficient production procedures must be adopted to improve protein yield and decrease procedural loss. This study analyzed cytoplasmic and periplasmic IL-2 expression for increased protein yield and significant biological activity. The study is focused on cloning IL-2 into a pET-SUMO and pET-28a vector that expresses IL-2 in soluble form and inclusion bodies, respectively. Both constructs were expressed into different <i>E. coli</i> expression strains, but the periplasmic and cytoplasmic expression of IL-2 was highest in overnight culture in Rosetta 2 (DE3). Therefore, <i>E. coli</i> Rosetta 2 (DE3) was selected for large-scale production and purification. Purified IL-2 was characterized by SDS-PAGE and western blotting, while its biological activity was determined using MTT bioassay. The results depict that the periplasmic and cytoplasmic IL-2 achieved adequate purification, yielding 0.86 and 0.51 mg/mL, respectively, with significant cytotoxic activity of periplasmic and cytoplasmic IL-2. Periplasmic IL-2 has shown better yield and significant biological activity in vitro which describes its attainment of native protein structure and function.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"45-57"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信