在CHO-K1细胞中稳定表达组织纤溶酶原激活物的减毒谷氨酰胺合成酶(GS)选择系统的建立。

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Mozhgan Raigani, Pegah Namdar, Farzaneh Barkhordari, Sima Sadat Seyedjavadi, Azam Rahimpour, Ahmad Adeli
{"title":"在CHO-K1细胞中稳定表达组织纤溶酶原激活物的减毒谷氨酰胺合成酶(GS)选择系统的建立。","authors":"Mozhgan Raigani, Pegah Namdar, Farzaneh Barkhordari, Sima Sadat Seyedjavadi, Azam Rahimpour, Ahmad Adeli","doi":"10.1080/10826068.2025.2454335","DOIUrl":null,"url":null,"abstract":"<p><p>Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations. Consequently, it is desirable to adopt innovative strategies to increase the efficiency of clone selection to reduce the time and effort invested in the cell line development process. Attenuating the selection marker gene is an effective strategy for isolating high-producing cells. In this study, we evaluated the efficiency of an attenuated glutamine synthetase selection system for the expression of human tissue plasminogen activator (t-PA) in CHO cells. We introduced an AU-rich element (ARE) at the 3'UTR of the glutamine synthetase coding sequence and employed a weak promoter (mSV40) for the expression of this gene. Subsequently, we analyzed the effect of ARE on the GS RNA levels, and recombinant t-PA expression. Our results demonstrate that the use of ARE significantly enhances the detection of high expressing cells compared to the control. Additionally, the t-PA expression level in GS-ARE clones was approximately 900-fold greater than those without the ARE.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-7"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an attenuated glutamine synthetase (GS) selection system for the stable expression of tissue plasminogen activator in CHO-K1 cells.\",\"authors\":\"Mozhgan Raigani, Pegah Namdar, Farzaneh Barkhordari, Sima Sadat Seyedjavadi, Azam Rahimpour, Ahmad Adeli\",\"doi\":\"10.1080/10826068.2025.2454335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations. Consequently, it is desirable to adopt innovative strategies to increase the efficiency of clone selection to reduce the time and effort invested in the cell line development process. Attenuating the selection marker gene is an effective strategy for isolating high-producing cells. In this study, we evaluated the efficiency of an attenuated glutamine synthetase selection system for the expression of human tissue plasminogen activator (t-PA) in CHO cells. We introduced an AU-rich element (ARE) at the 3'UTR of the glutamine synthetase coding sequence and employed a weak promoter (mSV40) for the expression of this gene. Subsequently, we analyzed the effect of ARE on the GS RNA levels, and recombinant t-PA expression. Our results demonstrate that the use of ARE significantly enhances the detection of high expressing cells compared to the control. Additionally, the t-PA expression level in GS-ARE clones was approximately 900-fold greater than those without the ARE.</p>\",\"PeriodicalId\":20401,\"journal\":{\"name\":\"Preparative Biochemistry & Biotechnology\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2025.2454335\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2025.2454335","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

中国仓鼠卵巢(CHO)细胞是最常见的表达高质量重组蛋白的宿主系统。用于工业重组蛋白生产的稳定CHO细胞系的开发通常依赖于二氢叶酸还原酶(DHFR)和谷氨酰胺合成酶(GS)扩增系统。发展稳定细胞系的传统方法导致细胞群异质性。因此,需要采用创新的策略来提高克隆选择的效率,以减少在细胞系发育过程中投入的时间和精力。弱化选择标记基因是分离高产细胞的有效策略。在这项研究中,我们评估了减毒谷氨酰胺合成酶选择系统在CHO细胞中表达人组织纤溶酶原激活物(t-PA)的效率。我们在谷氨酰胺合成酶编码序列的3'UTR处引入了一个富au元素(ARE),并使用了一个弱启动子(mSV40)来表达该基因。随后,我们分析了ARE对GS RNA水平和重组t-PA表达的影响。我们的研究结果表明,与对照组相比,使用ARE显著提高了对高表达细胞的检测。此外,GS-ARE克隆的t-PA表达量比没有ARE的克隆高约900倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an attenuated glutamine synthetase (GS) selection system for the stable expression of tissue plasminogen activator in CHO-K1 cells.

Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations. Consequently, it is desirable to adopt innovative strategies to increase the efficiency of clone selection to reduce the time and effort invested in the cell line development process. Attenuating the selection marker gene is an effective strategy for isolating high-producing cells. In this study, we evaluated the efficiency of an attenuated glutamine synthetase selection system for the expression of human tissue plasminogen activator (t-PA) in CHO cells. We introduced an AU-rich element (ARE) at the 3'UTR of the glutamine synthetase coding sequence and employed a weak promoter (mSV40) for the expression of this gene. Subsequently, we analyzed the effect of ARE on the GS RNA levels, and recombinant t-PA expression. Our results demonstrate that the use of ARE significantly enhances the detection of high expressing cells compared to the control. Additionally, the t-PA expression level in GS-ARE clones was approximately 900-fold greater than those without the ARE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信