Preparative Biochemistry & Biotechnology最新文献

筛选
英文 中文
Cellulase from Halomonas elongata for biofuel application: enzymatic characterization and inhibition tolerance investigation. 用于生物燃料的长形盐单胞菌纤维素酶:酶学表征和抑制耐受性研究。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-21 DOI: 10.1080/10826068.2025.2453727
Aathimoolam Narayanan, Kanimozhi Jeyaram, Ashish A Prabhu, Sundar Krishnan, Selvaraj Kunjiappan, Nareshkumar Baskaran, Dharanidharan Murugan
{"title":"Cellulase from <i>Halomonas elongata</i> for biofuel application: enzymatic characterization and inhibition tolerance investigation.","authors":"Aathimoolam Narayanan, Kanimozhi Jeyaram, Ashish A Prabhu, Sundar Krishnan, Selvaraj Kunjiappan, Nareshkumar Baskaran, Dharanidharan Murugan","doi":"10.1080/10826068.2025.2453727","DOIUrl":"https://doi.org/10.1080/10826068.2025.2453727","url":null,"abstract":"<p><p>Halophilic bacteria are promising candidates for biofuel production because of their efficient cellulose degradation. Their cellulases exhibit high activity, even in the presence of inhibitors and under extreme conditions, making them ideal for biorefinery applications. In this study, we isolated a strain of <i>Halomonas elongata</i> (Kadal6) from decomposed cotton cloth on a Rameshwaram seashore. Morphological, biochemical, and 16S rRNA analyses revealed that Kadal6 was 99.93% similar to the cellulase-producing strain, <i>H. elongata</i> MH25661. The tolerance of the cellulase to inhibitors was assessed through molecular docking with a cellulase model of MH25661 generated by I-TASSER and experimentally using response surface methodology (RSM) with Kadal6. A molecular docking study indicated a high inhibition constant for ethanol, hydroxymethylfurfural (HMF), and furfural. Cellulase from <i>H. elongata</i> Kadal6 (CellHe) showed a maximum inhibition rate of 44.27% at 55 °C, 15% ethanol, and 6.5 g/L furfural and HMF. The enzyme retained 50% of its activity in the presence of these inhibitors, and remained unaffected at 1 g/L furfural and HMF, although inhibition occurred at 3 g/L. <i>H. elongata</i> cellulase demonstrated significant tolerance to inhibition both in vitro (RSM) and in silico, indicating its potential for biorefinery applications in harsh environments.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-18"},"PeriodicalIF":2.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an attenuated glutamine synthetase (GS) selection system for the stable expression of tissue plasminogen activator in CHO-K1 cells. 在CHO-K1细胞中稳定表达组织纤溶酶原激活物的减毒谷氨酰胺合成酶(GS)选择系统的建立。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-21 DOI: 10.1080/10826068.2025.2454335
Mozhgan Raigani, Pegah Namdar, Farzaneh Barkhordari, Sima Sadat Seyedjavadi, Azam Rahimpour, Ahmad Adeli
{"title":"Development of an attenuated glutamine synthetase (GS) selection system for the stable expression of tissue plasminogen activator in CHO-K1 cells.","authors":"Mozhgan Raigani, Pegah Namdar, Farzaneh Barkhordari, Sima Sadat Seyedjavadi, Azam Rahimpour, Ahmad Adeli","doi":"10.1080/10826068.2025.2454335","DOIUrl":"https://doi.org/10.1080/10826068.2025.2454335","url":null,"abstract":"<p><p>Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations. Consequently, it is desirable to adopt innovative strategies to increase the efficiency of clone selection to reduce the time and effort invested in the cell line development process. Attenuating the selection marker gene is an effective strategy for isolating high-producing cells. In this study, we evaluated the efficiency of an attenuated glutamine synthetase selection system for the expression of human tissue plasminogen activator (t-PA) in CHO cells. We introduced an AU-rich element (ARE) at the 3'UTR of the glutamine synthetase coding sequence and employed a weak promoter (mSV40) for the expression of this gene. Subsequently, we analyzed the effect of ARE on the GS RNA levels, and recombinant t-PA expression. Our results demonstrate that the use of ARE significantly enhances the detection of high expressing cells compared to the control. Additionally, the t-PA expression level in GS-ARE clones was approximately 900-fold greater than those without the ARE.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-7"},"PeriodicalIF":2.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pea whey wastewater as a medium additive for the production of docosahexaenoic acid (C22:6 n3). 豌豆乳清废水作为生产二十二碳六烯酸(C22:6 n3)的介质添加剂。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-19 DOI: 10.1080/10826068.2025.2453833
Xinyu Wang, Xiangying Zhao, Ruiguo Li, Jiaxiang Zhang, Xia Li, Liping Liu
{"title":"Pea whey wastewater as a medium additive for the production of docosahexaenoic acid (C22:6 n3).","authors":"Xinyu Wang, Xiangying Zhao, Ruiguo Li, Jiaxiang Zhang, Xia Li, Liping Liu","doi":"10.1080/10826068.2025.2453833","DOIUrl":"https://doi.org/10.1080/10826068.2025.2453833","url":null,"abstract":"<p><p>In this study, the potential of pea whey wastewater (PWW) as a substrate for the biosynthesis of docosahexaenoic acid (DHA) was investigated by culturing the strain Aurantiochytrium limacinum SFD-1502. The results showed that culturing SFD-1502 in PWW alone resulted in poor growth, possibly due to an insufficient carbon source. The addition of glucose and monosodium glutamate to PWW resulted in a significant improvement in cell growth, and the dry weight of the cells reaching 43.45 ± 0.39 g/L g/L, comparable to that of the control (using artificial seawater fermentation medium), despite the lipid content in the cells and the DHA proportion in the lipids were slightly lower than those of the control. Subsequent studies demonstrated that the presence of raffinose family oligosaccharides, a higher concentration of arginine, and a lower concentration of Na<sup>+</sup> relative to artificial seawater in PWW resulted in the reduction of cellular lipids and the proportion of DHA. Furthermore, the chemical oxygen demand (COD) of PWW was reduced by approximately 60% during the fermentation. Consequently, the utilization of PWW in A. limacinum culture for DHA production is a viable and cost-effective strategy.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-8"},"PeriodicalIF":2.0,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic utilization of glucose and xylose for the myo-inositol biosynthesis in recombinant Escherichia coli BL21. 重组大肠杆菌BL21中葡萄糖和木糖协同合成肌醇的研究。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-17 DOI: 10.1080/10826068.2025.2453836
Min Wu, Bing Fu, Fuyao Guan, Chuyang Yan, Peize Wang, Haoju Wang, Xin Xu, Lei Zhang, Ping Yu
{"title":"Synergistic utilization of glucose and xylose for the myo-inositol biosynthesis in recombinant <i>Escherichia coli</i> BL21.","authors":"Min Wu, Bing Fu, Fuyao Guan, Chuyang Yan, Peize Wang, Haoju Wang, Xin Xu, Lei Zhang, Ping Yu","doi":"10.1080/10826068.2025.2453836","DOIUrl":"https://doi.org/10.1080/10826068.2025.2453836","url":null,"abstract":"<p><p>Myo-inositol is an active sugar alcohol which has important physiological functions. In this study, an engineered strain that could simultaneously utilize glucose and xylose to produce myo-inositol was constructed, and its fermentation performance was determined. Firstly, the <i>ptsG</i> gene was deleted to make <i>E. coli</i> BL21 capable of utilizing glucose and xylose simultaneously as mixed carbon source. <i>Galp</i> and <i>glk</i> genes were introduced to promote the glucose absorption after <i>ptsG</i> knockout. Secondly, the <i>ino1</i> gene from <i>Saccharomyces cerevisiae</i> SC288 was introduced and the <i>suhB</i> gene was overexpressed to construct the complete biosynthetic pathway of myo-inositol in <i>E. coli</i> BL21. Ultimately, when 20 g/L glucose and xylose with a ratio of 3:2 were used as the mixed carbon source, the consumption rate of the total sugar was the fastest, and the yield of myo-inositol was 0.63 g/L in 50 mL/250 mL culture system. When the fermentation system was expanded to 1 L shake flask, the yield of myo-inositol was 0.69 g/L. This study contributes to the production of myo-inositol with mixed sugar as the carbon source.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-8"},"PeriodicalIF":2.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Addition of microbial consortium to the rice straw biomethanization: effect on specific methanogenic activity, kinetic and bacterial community. 稻秆生物甲烷化过程中添加微生物联合体:对比产甲烷活性、动力学和细菌群落的影响
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-09 DOI: 10.1080/10826068.2024.2448182
Janet Jiménez, Annerys Carabeo-Pérez, Ana María Espinosa Negrín, Alexander Calero-Hurtado
{"title":"Addition of microbial consortium to the rice straw biomethanization: effect on specific methanogenic activity, kinetic and bacterial community.","authors":"Janet Jiménez, Annerys Carabeo-Pérez, Ana María Espinosa Negrín, Alexander Calero-Hurtado","doi":"10.1080/10826068.2024.2448182","DOIUrl":"https://doi.org/10.1080/10826068.2024.2448182","url":null,"abstract":"<p><p>The biomethanization of lignocellulosic wastes remains an inefficient and complex process due to lignin structures that hinder the hydrolysis step, therefore, some treatments are required. This work describes the addition of an enriched microbial consortium in the biomethanization of rice straw. The experiment was carried out in lab batch reactors following two strategies: (i) pretreatment of rice straw for 48 h using the enriched microbial consortium (dilution 1:100), and (ii) addition of this enriched microbial consortium (dilution 1:100) directly to the anaerobic reactors (bioaugmentation). The kinetic behavior was described using three models. As a result, the microbial consortium molecular characterization showed 58 different bacterial species, predominantly the Lactobacillaceae family (45.7%), and the Clostridiaceae family (19.1%), which were responsible for the positive effect obtained by bioaugmentation with methane yield increases of 16% (290 L<sub>N</sub>CH<sub>4</sub>/kgVS) respect to the control. All kinetic models applied fitted the experimental data for cumulative methane production, although the modified Hill model showed the best fit. Bioaugmentation strategies demonstrate their effectiveness in lignocellulosic biodegradation, but the novelty of this research lies in the application of an enriched microbial consortium obtained by the authors through soil isolation techniques, which are very inexpensive and affordable for developing countries.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-12"},"PeriodicalIF":2.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the impact of sodium acetate on lipid and carotenoid production in Rhodotorula mucilaginosa. 探讨醋酸钠对粘红酵母脂质和类胡萝卜素产生的影响。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-06 DOI: 10.1080/10826068.2024.2441918
Gedela Ravi, Veeranki Venkata Dasu, Kannan Pakshirajan
{"title":"Exploring the impact of sodium acetate on lipid and carotenoid production in <i>Rhodotorula mucilaginosa</i>.","authors":"Gedela Ravi, Veeranki Venkata Dasu, Kannan Pakshirajan","doi":"10.1080/10826068.2024.2441918","DOIUrl":"https://doi.org/10.1080/10826068.2024.2441918","url":null,"abstract":"<p><p>The study employed batch shake flasks to evaluate the impact of various nitrogen sources, phosphate levels, and sodium acetate (Na-acetate) on the <i>Rhodotorula mucilaginosa</i> growth and metabolite production. Adding Na-acetate to the medium resulted in significant improvements in critical metabolites. In shake flask experiments, this led to a cell dry weight (CDW) of 1.65 ± 0.94 g L<sup>-1</sup>, with lipids comprising 66.53% of the biomass. While β-carotene and carotenoid were 5.84 ± 0.05 and 37.66 ± 2.13 µg g<sup>-1</sup>, respectively. Subsequent experiments in a batch reactor with Na-acetate supplementation further improved these metrics. CDW increased to 5.02 ± 0.83 g L<sup>-1</sup>, and lipid content to 65.73 ± 0.81%. Carotenoid production rose to 40.33 ± 1.84 µg g<sup>-1</sup>, with β-carotene reaching 17.63 ± 0.32 µg g<sup>-1</sup>. The most promising results were obtained using a fed-batch bioreactor strategy with Na-acetate. <i>R. mucilaginosa</i> achieved the highest yields across all parameters: 48.36 ± 1.14 µg g<sup>-1</sup> of total carotenoids, 21.38 ± 1.14 µg g<sup>-1</sup> of β-carotene, and a lipid content of 68.58 ± 1.95%.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-16"},"PeriodicalIF":2.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of biodesulfurization of dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) by 4S pathway using molecular simulations. 利用分子模拟对二苯并噻吩(DBT)和 4,6-二甲基二苯并噻吩(4,6-DMDBT)通过 4S 途径进行生物脱硫的比较分析。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-03 DOI: 10.1080/10826068.2024.2448183
Pushpita Das, Umesh, Lepakshi Barbora, Vijayanand Suryakant Moholkar
{"title":"Comparative analysis of biodesulfurization of dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) by 4S pathway using molecular simulations.","authors":"Pushpita Das, Umesh, Lepakshi Barbora, Vijayanand Suryakant Moholkar","doi":"10.1080/10826068.2024.2448183","DOIUrl":"https://doi.org/10.1080/10826068.2024.2448183","url":null,"abstract":"<p><p>In this paper, we have analyzed biodesulfurization of dibenzothiophene (DBT) and 4,6-dibenzothiophene (4,6-DMDBT) by 4S metabolic pathway using molecular simulations. Docking analysis revealed lower binding energies and inhibition constants (<i>K<sub>i</sub></i>) for 4,6-DMDBT and its metabolic intermediates with DSZ enzymes than DBT and its intermediates. The complexes of substrate and its metabolites with DSZ enzymes had higher stability for 4,6-DMDBT than DBT owing to lower RMSF values than apoprotein. The docking analysis revealed affinity of the inhibitors HBPS and HBP (for DBT) and DMHBPS and DMHBP (for 4,6-DMDBT) toward DSZ enzyme due to negative binding energies. Molecular dynamics simulations showed stability of several enzyme-inhibitor complexes. The inhibitory effect of DMHBPS on DSZC enzyme (<i>K<sub>i</sub></i> = 1.53 µM) and DMHBP on DSZB enzyme (<i>K<sub>i</sub></i> = 3.87 µM) was most marked. The inhibitory effect of HBP on DSZC and DSZB enzymes was moderate due to <i>K<sub>i</sub></i> of 6.36 and 7.93 µM, respectively. The inhibition effect of DMHBP on the DSZA enzyme was insignificant due to high <i>K<sub>i</sub></i> of 53.6 µM. In summary, higher stability of enzyme-substrate complexes and strong inhibition by DMHBPS and DMHBP (due to very low <i>K<sub>i</sub></i>) contribute to slower biodesulfurization of 4,6-DMDBT as compared to DBT.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-17"},"PeriodicalIF":2.0,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved doramectin production based on high-throughput screening and medium optimization in Streptomyces avermitilis. 基于高通量筛选和培养基优化改进阿维菌素链霉菌的多拉菌素生产。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-02 DOI: 10.1080/10826068.2024.2448181
Yu Wang, Huan He, Siqi Li, Limei Ren, Xiaobing Li, Xiaoru Wang
{"title":"Improved doramectin production based on high-throughput screening and medium optimization in <i>Streptomyces avermitilis</i>.","authors":"Yu Wang, Huan He, Siqi Li, Limei Ren, Xiaobing Li, Xiaoru Wang","doi":"10.1080/10826068.2024.2448181","DOIUrl":"10.1080/10826068.2024.2448181","url":null,"abstract":"<p><p>Doramectin, a 16-membered macrocyclic lactone that is widely used in the treatment of mammalian parasitic diseases. Doramectin was produced by mutant <i>Streptomyces avermitilis</i> using cyclohexanecarboxylic acid as a precursor. As a semi-synthetic insecticidal agent produced, the production of doramectin was low, which could not be satisfy the demands of industrial fermentation. In this study, a high-yield mutant strain <i>S. avermitilis</i> DA-137 was screened from the starting strain <i>S. avermitilis</i> D-11 through a high-throughput screening strategy. <i>S. avermitilis</i> D-11 was treated with iterative atmospheric and room temperature plasma mutagenesis to induce mutations. Mutation strains were prescreened by spreading on enhanced doramectin-tolerance plates and were rescreened in 24-deep microtiter plates and via microplate readers to obtain high-producing strains. The resulting mutant strain <i>S. avermitilis</i> DA-137 produced 431.5 mg/L doramectin, a 187% increase compared to that of D-11, revealing mutagenesis and doramectin-tolerance screening is an efficient method to enhance doramectin production. Then, fermentation medium was optimized using the response surface method to improve doramectin production. In the optimized fermentation medium, the yield of doramectin was increased to 934.5 mg/L in shake flask. Furthermore, batch culture was carried out in a 50 L fermenter, and the yields of doramectin reached 1217 mg/L at 216 h, which was the highest yield reported to date. This study demonstrates a successful approach for enhancing doramectin production through high-throughput screening strategy and medium optimization, serving as a reference for increasing the yield of other macrocyclic lactone antibiotics.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-11"},"PeriodicalIF":2.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142915491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression and characterization of a thermostable monoacylglycerol lipase from thermophilic Geobacillus kaustophilus. 嗜热革兰霉菌(Geobacillus kaustophilus)中一种恒温单酰基甘油脂肪酶的表达和特征。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-06-04 DOI: 10.1080/10826068.2024.2361147
Noriyuki Doukyu, Hayato Ito, Kugako Sugimoto
{"title":"Expression and characterization of a thermostable monoacylglycerol lipase from thermophilic <i>Geobacillus kaustophilus</i>.","authors":"Noriyuki Doukyu, Hayato Ito, Kugako Sugimoto","doi":"10.1080/10826068.2024.2361147","DOIUrl":"10.1080/10826068.2024.2361147","url":null,"abstract":"<p><p>Thermophilic <i>Geobacillus kaustophilus</i> HTA426 genome possesses a monoacylglycerol lipase (MAGL) gene. MAGLs can synthesize emulsifiers for use in the food and pharmaceutical industries from fatty acids and glycerol. They can also be used to analyze monoacylglycerol (MAG) levels in serum and food. The MAGL gene from strain HTA426 was artificially synthesized and heterologously expressed in <i>Escherichia coli</i> BL21(DE3). The recombinant His-tag fused MAGL (GkMAGL) was purified using a Ni<sup>2+</sup>-affinity column. The purified enzyme showed a temperature optimum at 65 °C and was stable up to 75 °C after 30 min incubation. In addition, the enzyme exhibited a pH optimum of 7.5 and was stable from pH 5.0 to 11.0. The enzyme hydrolyzed monoacylglycerols and showed the highest activity toward 1-monolauroylglycerol. The enzyme was stable in the presence of various organic solvents and detergents. The addition of Triton X-100 significantly increased GkMAGL activity. The thermal stability of the enzyme was higher than that of thermostable MAGL from <i>Geobacillus</i> sp. 12AMOR1 (12AMOR1_MAGL). Circular dichroism spectral analysis showed that the conformational stability of the GkMAGL was higher than that of 12AMOR1_MAGL at higher temperatures. These results indicate that the GkMAGL has useful features that can be used for various biotechnological applications.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"58-66"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New wheat straw fermentation feed: recombinant Schizosaccharomyces pombe efficient degradation of lignocellulose and increase feed protein. 新型小麦秸秆发酵饲料:重组小麦酵母菌(Schizosaccharomyces pombe)高效降解木质纤维素并增加饲料蛋白质。
IF 2 4区 生物学
Preparative Biochemistry & Biotechnology Pub Date : 2025-01-01 Epub Date: 2024-06-02 DOI: 10.1080/10826068.2024.2353637
Xihua Chen, Xiaoyu Liang, Na Shi, Lu He, Yi Ma, Daochen Zhu, Zhong Ni, Huayou Chen
{"title":"New wheat straw fermentation feed: recombinant <i>Schizosaccharomyces pombe</i> efficient degradation of lignocellulose and increase feed protein.","authors":"Xihua Chen, Xiaoyu Liang, Na Shi, Lu He, Yi Ma, Daochen Zhu, Zhong Ni, Huayou Chen","doi":"10.1080/10826068.2024.2353637","DOIUrl":"10.1080/10826068.2024.2353637","url":null,"abstract":"<p><p>Wheat straw contains a high amount of lignin, hindering the action of cellulase and hemicellulase enzymes, leading to difficulties in nutrient absorption by animals from straw feed. However, currently, the biological treatment of straw relies primarily on fungal degradation and cannot be directly utilized for the preparation of livestock feed. This study focuses on enzymatic co-fermentation of wheat straw to produce high-protein, low-cellulose biological feed, integrating lignin degradation with feed manufacturing, thereby simplifying the feed production process. After the optimization using Box-Behnken Design for the feed formulation, with a glucose oxidase addition of 2.46%, laccase addition of 3.4%, and malonic acid addition of 0.6%, the wheat straw feed prepared in this experiment exhibited a true protein content of 9.35%. This represented a fourfold increase compared to the non-fermented state, and the lignocellulose degradation rate of wheat straw reached 45.42%. These results not only highlight the substantial enhancement in protein content but also underscore the significant advancement in lignocellulose breakdown. This formulation significantly enhanced the palatability and nutritional value of the straw feed, contributing to the industrial development of straw feed.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"36-44"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信