{"title":"Optimization of microwave-assisted extraction using response surface methodology and HPLC-DAD phenolic compounds quantification from <i>Hylocereus undatus</i> peel and pulp cultivated in Tunisia.","authors":"Wissal Ayouni, Hajer Riguene, Amira Yahyaoui, Marwa Dhiabi, Souad Dali, Houcine Ammar, Sirine Choura, Mohamed Chamkha, Ridha Ben Salem, Rigane Ghayth","doi":"10.1080/10826068.2024.2423636","DOIUrl":"https://doi.org/10.1080/10826068.2024.2423636","url":null,"abstract":"<p><p>The present study aimed to optimize the microwave-assisted extraction process for both the peel and pulp of <i>Hylocereus undatus</i> (white dragon fruit) cultivated in Tunisia, using response surface methodology. Total phenolic content, total flavonoid content, FRAP (ferric reducing antioxidant power), and DPPH (1,1-diphenyl-2-picrylhydrazyl) antioxidant activities were optimized. A central composite design (CCD) was applied, considering three key variables: extraction time, extraction temperature, and liquid-to-solid ratio. The optimized extraction parameters for <i>Hylocereus undatus</i> peel and pulp were determined respectively (9.57 min, 42.20 °C and 27.79 mL/g) and (10.08 min, 40.84 °C and 31.52 mL/g). The main phenolic compounds identified in <i>Hylocereus undatus</i> peel and pulp extracts using HPLC-DAD were chlorogenic and caffeic acids and rutin, quercetin, luteolin-7-<i>O</i>-glucoside as flavonoids. Therefore, this research has revealed the potential of a sustainable and eco-friendly process hold promise a directional option and encouraging a circular economy approach for industrial production of antioxidant-rich <i>Hylocereus undatus</i> extracts.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-17"},"PeriodicalIF":2.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineered production of 5-aminolevulinic acid in recombinant <i>Escherichia coli</i> BL21.","authors":"Zhiwen Zhu, Bing Fu, Jiajie Lu, Peize Wang, Chuyang Yan, Fuyao Guan, Jianying Huang, Ping Yu","doi":"10.1080/10826068.2024.2423644","DOIUrl":"https://doi.org/10.1080/10826068.2024.2423644","url":null,"abstract":"<p><p>5-aminolevulinic acid (ALA) is a non-protein amino acid that has been widely used in the fields of medicine and agriculture. This study aims to engineer the C5 pathway of the ALA biosynthesis in <i>Escherichia coli</i> BL21 to enhance ALA production. The ALA synthase genes <i>gltX</i>, <i>hemA,</i> and <i>hemL</i> were overexpressed in <i>E. coli</i> BL21 to lead to the increase in the production of ALA. The sRNA RyhB was also overexpressed to downregulate the expression of ALA dehydratase to reduce the downstream bioconversion of ALA to porphobilinogen. Next, the gene <i>arcA</i> was knocked out by CRISPR-Cas9 technology to open the TCA cycle to promote the respiratory metabolism of the strain to reduce the feedback inhibition of heme to ALA. The fermentation conditions of the engineered strain were optimized by response surface experiments. The time-course analysis of the ALA production was carried out in a 1 L shake flask. Through these efforts, the production of ALA in engineered strain reached 2953 mg/L in a 1 L shake flask. This study contributes to the industrial production of ALA by the engineered <i>E. coli</i> in the future.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-11"},"PeriodicalIF":2.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of ultrasound-assisted deep eutectic solvent extraction, characterization, and bioactivities of polysaccharide from <i>Plantaginis Semen</i>.","authors":"Yao Wen, Geping Chen, Lei Hu","doi":"10.1080/10826068.2024.2423640","DOIUrl":"https://doi.org/10.1080/10826068.2024.2423640","url":null,"abstract":"<p><p><i>Plantaginis Semen</i> (PS) are the dried mature seeds of <i>Plantago asiatica</i> L. or <i>Plantagodepressa</i> Willd. in the Plantago family. Its polysaccharides are important components of <i>PS</i>. Response surface methodology was used to optimize the ultrasonic-assisted deep eutectic solvent (DES) extraction process of PS polysaccharides (PSP). The results showed that the optimal extraction parameters were a solid-liquid ratio of 1:35 g/mL, an extraction time of 73 min, and a molar ratio of 2:1. The yield of PSP was 0.64% and 1.20% by water immersion and ultrasonic water extraction, respectively, indicating that the DES extraction method (2.21 ± 0.06%) is superior to these two methods, and the optimization effect is good. Through the α-glucosidase and α-amylase inhibition activities experiment, it was found that the IC<sub>50</sub> values of PSPs-1 were 1122 and 220.5 μg/mL. DPPH·and ABTS<sup>+</sup> scavenging activity experiments showed that the IC<sub>50</sub> values of PSPs-1 were 19.2 and 4.3 μg/mL, respectively. Its molar ratio of monosaccharide composition is rhamnose: galactose: galacturonic acid: glucose: glucuronic acid: arabinose: mannose: xylose = 33.6:13.3:6.5:3:2.6:2:1.4:1. Therefore, this study can provide an experimental basis for the establishment of an industrialized production process of polysaccharides and the study of their biological activities.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-12"},"PeriodicalIF":2.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D John Babu, K Balumahendra, T C Venkateswarulu, T Sathish
{"title":"Statistical optimization and sequential scale-up of α-galactosidase production <i>by Actinoplanes utahensis</i> B1 from shake flask to pilot scale.","authors":"D John Babu, K Balumahendra, T C Venkateswarulu, T Sathish","doi":"10.1080/10826068.2024.2344500","DOIUrl":"10.1080/10826068.2024.2344500","url":null,"abstract":"<p><p>α-Galactosidase (α-GAL) is a class of hydrolase that releases galactose from galacto-oligosaccharides and synthetic substrates such as pNPG. In this study, the production of α-GAL by <i>Actinoplanes utahensis</i> B1 in submerged fermentation was enhanced by using statistical methods. The effects of temperature, pH, and inoculum percentage on enzyme secretion were optimized using BBD of RSM. The optimized process was scaled up from the shake flask to the laboratory scale (5 L) and to pilot scale (30 L) using K<sub>L</sub>a based scale-up strategy. By using BBD, a maximum yield of 62.5 U/mL was obtained at a temperature of 28 °C, a pH of 6.9, and an inoculum of 6.4%. Scale-up was performed successfully and achieved a yield of 74.4 U/mL and 76.8 U/mL in laboratory scale and pilot scale fermenters. The TOST was performed to validate the scale-up strategy and the results showed a confidence level of 95% for both scales indicating the perfect execution of scale-up procedure. Through the implementation of BBD and scale-up strategy, the overall enzyme yield has been significantly increased to 76%. This is the first article to explore the scale-up of α-GAL from the <i>A. utahensis</i> B1 strain and provide valuable insights for industrial applications.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1216-1225"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ting Li, Wenbo Li, Yao Guo, Long Han, Wen Zhang, Ronghui Liu, Hanqing Feng
{"title":"An optimization by response surface methodology for the enhanced production of rMBSP from <i>Pichia pastoris</i> and study of its application.","authors":"Ting Li, Wenbo Li, Yao Guo, Long Han, Wen Zhang, Ronghui Liu, Hanqing Feng","doi":"10.1080/10826068.2024.2361159","DOIUrl":"10.1080/10826068.2024.2361159","url":null,"abstract":"<p><p><b>Background:</b> Recombinant myofibril-bound serine proteinase (rMBSP) was successfully expressed in <i>Pichia pastoris</i> GS115 in our laboratory. However, low production of rMBSP in shake flask constraints further exploration of properties.</p><p><p><b>Methods:</b> A 5-L high cell density fermentation was performed and the fermentation medium was optimized. Response surface methodology (RSM) was used to optimize the culture condition through modeling three selected parameter.</p><p><p><b>Results:</b> Under the optimized culture medium (LBSM, 1% yeast powder and 1% peptone) and culture conditions (induction pH 5.5, temperature 29 °C, time 40 h), the yield of rMBSP was 420 mg/L in a 5-L fermenter, which was a 6-fold increase over thar, expressed in flask cultivation. The desired enzyme was purified by two-step, which yielded a 33.7% recovery of a product that had over 85% purity. The activity of purified rMBSP was significantly inhibited by Ca<sup>2+</sup>, Mg<sup>2+</sup>, SDS, guanidine hydrochloeide, acetone, isopropanol, chloroform, <i>n</i>-hexane and <i>n</i>-heptane. Enzymatic analysis revealed a <i>K<sub>m</sub></i> of 2.89 ± 0.09 μM and a <i>V<sub>max</sub></i> of 14.20 ± 0.12 nM•min<sup>-1</sup> for rMBSP. LC-MS/MS analysis demonstrated the specific cleavage of bovine serum albumin by rMPSP.</p><p><p><b>Conclusion:</b> These findings suggest that rMPSP has potential as a valuable enzyme for protein science research.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1320-1328"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetic and thermodynamic investigation of Rhodanese synthesized by enhanced <i>Klebsiella oxytoca</i> JCM 1665 strain: a comparative between the free and immobilized enzyme entrapped in alginate beads.","authors":"Babamotemi Oluwasola Itakorode, Dorcas Ibukunoluwa Itakorode, Nkem Torimiro, Raphael Emuebie Okonji","doi":"10.1080/10826068.2024.2347407","DOIUrl":"10.1080/10826068.2024.2347407","url":null,"abstract":"<p><p><i>Klebsiella oxytoca</i> JCM 1665 was subjected to extracellular rhodanese production using a submerged fermentation technique. The organism was further engineered for higher cyanide tolerance and rhodanese yield using ethylmethanesulfonate as a mutagen. Mutagenesis resulted in an improved mutant with high cyanide tolerance (100 mM) and rhodanese yield (26.7 ± 0.67 U/mL). This yield was 4.34-fold higher than the wild strain (6.15 ± 0.65 U/mL). At temperatures ranging from 30 to 80 °C, the first-order thermal denaturation constant (<i>K<sub>d</sub></i>) for free enzyme increases from 0.00818 to 0.0333 min<sup>-1</sup> while the immobilized enzyme increases from 0.003 to 0.0204 min<sup>-1</sup>. The equivalent half-life reduces from 99 to 21 minutes and 231 to 35 minutes, respectively. Residual activity tests were used to assess the thermodynamic parameters for both enzyme preparations. For the free enzyme, the parameters obtained were enthalpy (29.40 to 29.06 kJ.mol<sup>-1</sup>), entropy (-194.24 to -197.50 J.mol<sup>-1</sup>K<sup>-1</sup>) and Gibbs free energy (90.20 to 98.80 kJ.mol<sup>-1</sup>). In addition, for immobilized rhodanese, we obtained enthalpy (40.40 to 40.07 kJ.mol<sup>-1</sup>), entropy (-164.21 to - 165.20 J.mol<sup>-1</sup>K<sup>-1</sup>) and Gibbs free energy (91.80 to 98.40 kJ.mol<sup>-1</sup>. Regarding its operational stability, the enzyme was able to maintain 63% of its activity after being used for five cycles. Immobilized <i>K. oxytoca</i> rhodanese showed a marked resistance to heat inactivation compared to free enzyme forms; making it of utmost significance in many biotechnological applications.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1275-1284"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flávio Antônio de Oliveira-Simões, Isabela Victorino da Silva Amatto, Camila Langer Marciano, Nathalia Gonsales da Rosa-Garzon, Débora Noma Okamoto, Maria Aparecida Juliano, Luiz Juliano, Hamilton Cabral
{"title":"Biochemical characterization, stability, and kinetics of three substrates of the recombinant TMPRSS2 serine protease domain.","authors":"Flávio Antônio de Oliveira-Simões, Isabela Victorino da Silva Amatto, Camila Langer Marciano, Nathalia Gonsales da Rosa-Garzon, Débora Noma Okamoto, Maria Aparecida Juliano, Luiz Juliano, Hamilton Cabral","doi":"10.1080/10826068.2024.2349132","DOIUrl":"10.1080/10826068.2024.2349132","url":null,"abstract":"<p><p>Transmembrane serine protease 2 (TMPRSS2) is a membrane-bound protease belonging to the type II transmembrane serine protease (TTSP) family. It is a multidomain protein, including a serine protease domain responsible for its self-activation. The protein has been implicated as an oncogenic transcription factor and for its ability to cleave (prime) the SARS-CoV-2 spike protein. In order to characterize the TMPRSS2 biochemical properties, we expressed the serine protease domain (rTMPRSS2_SP) in <i>Komagataella phaffii</i> using the pPICZαA vector and purified it using immobilized metal affinity (Ni Sepharose™ excel) and size exclusion (Superdex 75) chromatography. We explored operational fluorescence resonance energy transfer FRET peptides as substrates. We chose the peptide Abz-QARK-(Dnp)-NH<sub>2</sub> (Abz = ortho-aminobenzoic acid, the fluorescence donor, and Dnp = 2,4-dinitrophenyl, the quencher group) as a substrate to find the optimal conditions for maximum enzymatic activity. We found that metallic ions such as Ca<sup>2+</sup> and Na<sup>+</sup> increased enzymatic activity, but ionic surfactants and reducing agents decreased catalytic capacity. Finally, we determined the rTMPRSS2_SP stability for long-term storage. Altogether, our results represent the first comprehensive characterization of TMPRSS2's biochemical properties, providing valuable insights into its serine protease domain.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1285-1293"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Greta I Reynoso-Cereceda, Norma A Valdez-Cruz, Nestor O Pérez, Mauricio A Trujillo-Roldán
{"title":"A comprehensive study of glucose and oxygen gradients in a scaled-down model of recombinant HuGM-CSF production in thermoinduced <i>Escherichia coli</i> fed-batch cultures.","authors":"Greta I Reynoso-Cereceda, Norma A Valdez-Cruz, Nestor O Pérez, Mauricio A Trujillo-Roldán","doi":"10.1080/10826068.2024.2347403","DOIUrl":"10.1080/10826068.2024.2347403","url":null,"abstract":"<p><p>The effect of gradients of elevated glucose and low dissolved oxygen in the addition zone of fed-batch <i>E. coli</i> thermoinduced recombinant high cell density cultures can be evaluated through two-compartment scale-down models. Here, glucose was fed in the inlet of a plug flow bioreactor (PFB) connected to a stirred tank bioreactor (STB). <i>E. coli</i> cells diminished growth from 48.2 ± 2.2 g/L in the stage of RP production if compared to control (STB) with STB-PFB experiments, when residence time inside the PFB was 25 s (34.1 ± 3.5 g/L) and 40 s (25.6 ± 5.1 g/L), respectively. The recombinant granulocyte-macrophage colony-stimulating factor (rHuGM-CSF) production decreased from 34 ± 7% of RP in inclusion bodies (IB) in control cultures to 21 ± 8%, and 7 ± 4% during the thermoinduction production phase when increasing residence time inside the PFB to 25 s and 40 s, respectively. This, along with the accumulation of acetic and formic acid (up to 4 g/L), indicates metabolic redirection of central carbon routes through metabolic flow and mixed acid fermentation. Special care must be taken when producing a recombinant protein in heat-induced <i>E. coli</i>, because the yield and productivity of the protein decreases as the size of the bioreactors increases, especially if they are carried at high cell density.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1263-1274"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isolation, characterization and optimization of oleaginous <i>Providencia vermicola</i> as a feedstock for biodiesel production using Response Surface Methodology.","authors":"Temitope Abiola, Olumide D Olukanni","doi":"10.1080/10826068.2024.2344516","DOIUrl":"10.1080/10826068.2024.2344516","url":null,"abstract":"<p><p>Oleaginous organisms accrue more than twenty percent of their biomass as lipids and hence are promising feedstocks for biodiesel production. In this study, lipid accumulating bacteria were isolated from diesel-contaminated soils and screened with Sudan black B stain. The most oleaginous was done using 16s rRNA gene sequencing. Lipid production was initially optimized based on media, nitrogen source, pH and temperature. Response surface methodology (RSM) was then employed for the enhancement of lipid weight and content. Obtained lipid was converted to biodiesel using direct transesterification, and both lipid and biodiesel were characterized using FTIR. A total of thirteen bacteria were isolated and the most prominent lipid producer was identified as <i>Providencia vermicola</i> with lab number BA6. Preliminary optimization studies revealed optimum lipid production when nutrient broth and acetic acid served as carbon source; KNO<sub>3</sub> as nitrogen source, pH 7.0 and 30 °C. Optimization using RSM resulted in a 5.1% and 74.1% increase in the biomass and lipid content of BA6 respectively. FTIR analyses confirmed the presence of functional groups characteristic of lipids and biodiesel. <i>P. vermicola</i> is a novel oleaginous organism that represents a promising feedstock for biodiesel production.HIGHLIGHTSThe bacterium designated as BA6 identified as <i>Providencia vermicola</i> has the highest lipid contents of the oleaginous bacteria isolated.It accumulates lipids up to 47.73 % of its biomassThe percentage lipids accumulation increased to about 74 % when RSM was used.<i>Providencia vermicola</i> is being reported as an oleaginous organism for the first time.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1226-1242"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resin screening and process optimization for erythritol mother liquor chromatographic separation.","authors":"Haiyang Li, Xiangying Zhao, Liping Liu, Mingjing Yao, Yanlei Han, Ruiguo Li, Jianjun Liu, Jiaxiang Zhang","doi":"10.1080/10826068.2024.2349936","DOIUrl":"10.1080/10826068.2024.2349936","url":null,"abstract":"<p><p>In order to improve the utilization value of the erythritol mother liquor, the separation and purification of the erythritol mother liquor was selected in this study. The selected chromatographic separation programme for erythritol crystallizing mother liquor is as follows: Firstly, erythritol is resolved from mannitol and arabitol with DTF-01Ca (Suqing Group) resin and then mannitol is resolved from arabitol with 99Ca/320 (Dowex) resin. At the same time, the chromatographic conditions of the DTF-01Ca (Suqing Group) and 99Ca/320 (Dowex) resins were optimized, resulting in an optimal separation temperature and mobile phase flow rate of 70 °C, 10 ml/min. On this basis, a single-column chromatographic model was used to calculate the TD model parameter (<math><mrow><mi>N</mi></mrow></math>) and the mass transfer coefficient (<math><msub><mrow><mi>k</mi></mrow><mrow><mi>m</mi><mi> </mi></mrow></msub></math>) of the separation of erythritol mother liquor by DTF-01Ca (Suqing Group) and 99Ca/320 (Dowex) resins. The adsorption isotherms, TD model parameter (<math><mrow><mi>N</mi></mrow></math>) and the mass transfer coefficient (<math><msub><mrow><mi>k</mi></mrow><mrow><mi>m</mi><mi> </mi></mrow></msub></math>) provides data references for the design and operation of the simulated moving beds (SMB) separation system for the industrial-scale separation of erythritol crystallizing mother liquor.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1294-1305"},"PeriodicalIF":2.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}