芥子油饼生物转化生产脂肪酶、优化和直接固定固态发酵提取物。

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Bhim Singh, Asim Kumar Jana, Mithu Maiti Jana
{"title":"芥子油饼生物转化生产脂肪酶、优化和直接固定固态发酵提取物。","authors":"Bhim Singh, Asim Kumar Jana, Mithu Maiti Jana","doi":"10.1080/10826068.2025.2453729","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal lipases are the leading industrial biocatalyst due to their broad applications, but high cost limits their commercial usage. The low-cost agri-residues substrates can reduce the cost of lipase production. However, the compatibility of agri-residue with fungal species, recovery process of lipase and stability of the enzyme are crucial steps. The aim of the present work was optimization of lipase production from a suitable combination of fungal culture with a locally available vegetable oilseed cake (mustard/groundnut/almond/cottonseed) in solid-state fermentation process and its direct immobilization. The enzyme produced using selected combination of <i>Rhizopus oryzae</i> and mustard oilseed cake was optimized by Plackett-Burman design, one-factor-at-a-time and central composite design (CCD). The highest enzyme activity of 25.08 U/gds was obtained by CCD at urea 2.11% w/w, inoculum size 1.18% v/w, and moisture content 69.99% w/w. The crude enzyme from the extract was immobilized on functionalized magnetic nanoparticles with the results of protein loading 68.88 ± 3.54 µg/mg of MNPs and activity recovery of 60.33 ± 3.03%. This study can be helpful to explore the suitability of locally available agri-residue for production of lipase and utilization of enzyme in different industrial applications.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-14"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioconversion of mustard oil cake for production of lipase, optimization and direct immobilization from solid-state fermentation extract.\",\"authors\":\"Bhim Singh, Asim Kumar Jana, Mithu Maiti Jana\",\"doi\":\"10.1080/10826068.2025.2453729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fungal lipases are the leading industrial biocatalyst due to their broad applications, but high cost limits their commercial usage. The low-cost agri-residues substrates can reduce the cost of lipase production. However, the compatibility of agri-residue with fungal species, recovery process of lipase and stability of the enzyme are crucial steps. The aim of the present work was optimization of lipase production from a suitable combination of fungal culture with a locally available vegetable oilseed cake (mustard/groundnut/almond/cottonseed) in solid-state fermentation process and its direct immobilization. The enzyme produced using selected combination of <i>Rhizopus oryzae</i> and mustard oilseed cake was optimized by Plackett-Burman design, one-factor-at-a-time and central composite design (CCD). The highest enzyme activity of 25.08 U/gds was obtained by CCD at urea 2.11% w/w, inoculum size 1.18% v/w, and moisture content 69.99% w/w. The crude enzyme from the extract was immobilized on functionalized magnetic nanoparticles with the results of protein loading 68.88 ± 3.54 µg/mg of MNPs and activity recovery of 60.33 ± 3.03%. This study can be helpful to explore the suitability of locally available agri-residue for production of lipase and utilization of enzyme in different industrial applications.</p>\",\"PeriodicalId\":20401,\"journal\":{\"name\":\"Preparative Biochemistry & Biotechnology\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2025.2453729\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2025.2453729","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioconversion of mustard oil cake for production of lipase, optimization and direct immobilization from solid-state fermentation extract.

Fungal lipases are the leading industrial biocatalyst due to their broad applications, but high cost limits their commercial usage. The low-cost agri-residues substrates can reduce the cost of lipase production. However, the compatibility of agri-residue with fungal species, recovery process of lipase and stability of the enzyme are crucial steps. The aim of the present work was optimization of lipase production from a suitable combination of fungal culture with a locally available vegetable oilseed cake (mustard/groundnut/almond/cottonseed) in solid-state fermentation process and its direct immobilization. The enzyme produced using selected combination of Rhizopus oryzae and mustard oilseed cake was optimized by Plackett-Burman design, one-factor-at-a-time and central composite design (CCD). The highest enzyme activity of 25.08 U/gds was obtained by CCD at urea 2.11% w/w, inoculum size 1.18% v/w, and moisture content 69.99% w/w. The crude enzyme from the extract was immobilized on functionalized magnetic nanoparticles with the results of protein loading 68.88 ± 3.54 µg/mg of MNPs and activity recovery of 60.33 ± 3.03%. This study can be helpful to explore the suitability of locally available agri-residue for production of lipase and utilization of enzyme in different industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信