{"title":"Optimization of ultrasound-assisted deep eutectic solvent extraction, characterization, and bioactivities of polysaccharide from <i>Plantaginis Semen</i>.","authors":"Yao Wen, Geping Chen, Lei Hu","doi":"10.1080/10826068.2024.2423640","DOIUrl":"10.1080/10826068.2024.2423640","url":null,"abstract":"<p><p><i>Plantaginis Semen</i> (PS) are the dried mature seeds of <i>Plantago asiatica</i> L. or <i>Plantagodepressa</i> Willd. in the Plantago family. Its polysaccharides are important components of <i>PS</i>. Response surface methodology was used to optimize the ultrasonic-assisted deep eutectic solvent (DES) extraction process of PS polysaccharides (PSP). The results showed that the optimal extraction parameters were a solid-liquid ratio of 1:35 g/mL, an extraction time of 73 min, and a molar ratio of 2:1. The yield of PSP was 0.64% and 1.20% by water immersion and ultrasonic water extraction, respectively, indicating that the DES extraction method (2.21 ± 0.06%) is superior to these two methods, and the optimization effect is good. Through the α-glucosidase and α-amylase inhibition activities experiment, it was found that the IC<sub>50</sub> values of PSPs-1 were 1122 and 220.5 μg/mL. DPPH·and ABTS<sup>+</sup> scavenging activity experiments showed that the IC<sub>50</sub> values of PSPs-1 were 19.2 and 4.3 μg/mL, respectively. Its molar ratio of monosaccharide composition is rhamnose: galactose: galacturonic acid: glucose: glucuronic acid: arabinose: mannose: xylose = 33.6:13.3:6.5:3:2.6:2:1.4:1. Therefore, this study can provide an experimental basis for the establishment of an industrialized production process of polysaccharides and the study of their biological activities.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"434-445"},"PeriodicalIF":2.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue Han, Hai Liu, Yeshan Zhang, Yi Zhang, Zhiqin Song, Lili Yang, Xiao Liu, Lin Yang, Mingkai Wu, Longyan Tan
{"title":"The effects of different extraction methods on the structure and antioxidant properties of <i>Bletilla striata</i> polysaccharide.","authors":"Xue Han, Hai Liu, Yeshan Zhang, Yi Zhang, Zhiqin Song, Lili Yang, Xiao Liu, Lin Yang, Mingkai Wu, Longyan Tan","doi":"10.1080/10826068.2024.2419862","DOIUrl":"10.1080/10826068.2024.2419862","url":null,"abstract":"<p><p><i>Bletilla striata</i> polysaccharide (BSP) is one of the main active ingredients of the traditional Chinese medicine <i>Bletilla striata</i> (Thunb) Richb.f and the extraction method of BSP has a significant impact on its properties. This study investigated the effects of four extraction methods, namely hot water extraction, ultrasonic extraction, enzyme extraction, and microwave extraction, on the structure and antioxidant properties of BSP. Characterization results from FTIR and NMR showed that all four BSP consisted mainly of glucose and mannose, forming α-glycosidic and β-glycosidic linkages to form glucomannan. Hot water extraction had the lowest extraction rate of BSP at 21.78% ± 0.73%. The polysaccharide BSP-H obtained from hot water extraction had the smallest absolute Zeta potential and Grain size, but the largest molecular weight at 204 kDa. It exhibited the best thermal stability and superior antioxidant activity compared to polysaccharides extracted using the other three methods, as evaluated by three different antioxidant assays. Although the antioxidant activity of BSP-V was slightly weaker, it showed a significant improvement compared to the remaining two polysaccharides. These results suggest that hot water extraction is the most suitable method for large-scale application of BSP, preserving its activity effectively, thus facilitating practical production and product development.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"392-402"},"PeriodicalIF":2.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of microwave-assisted extraction using response surface methodology and HPLC-DAD phenolic compounds quantification from <i>Hylocereus undatus</i> peel and pulp cultivated in Tunisia.","authors":"Wissal Ayouni, Hajer Riguene, Amira Yahyaoui, Marwa Dhiabi, Souad Dali, Houcine Ammar, Sirine Choura, Mohamed Chamkha, Ridha Ben Salem, Rigane Ghayth","doi":"10.1080/10826068.2024.2423636","DOIUrl":"10.1080/10826068.2024.2423636","url":null,"abstract":"<p><p>The present study aimed to optimize the microwave-assisted extraction process for both the peel and pulp of <i>Hylocereus undatus</i> (white dragon fruit) cultivated in Tunisia, using response surface methodology. Total phenolic content, total flavonoid content, FRAP (ferric reducing antioxidant power), and DPPH (1,1-diphenyl-2-picrylhydrazyl) antioxidant activities were optimized. A central composite design (CCD) was applied, considering three key variables: extraction time, extraction temperature, and liquid-to-solid ratio. The optimized extraction parameters for <i>Hylocereus undatus</i> peel and pulp were determined respectively (9.57 min, 42.20 °C and 27.79 mL/g) and (10.08 min, 40.84 °C and 31.52 mL/g). The main phenolic compounds identified in <i>Hylocereus undatus</i> peel and pulp extracts using HPLC-DAD were chlorogenic and caffeic acids and rutin, quercetin, luteolin-7-<i>O</i>-glucoside as flavonoids. Therefore, this research has revealed the potential of a sustainable and eco-friendly process hold promise a directional option and encouraging a circular economy approach for industrial production of antioxidant-rich <i>Hylocereus undatus</i> extracts.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"417-433"},"PeriodicalIF":2.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cellulase immobilization on nano-chitosan/chromium metal-organic framework hybrid matrix for efficient conversion of lignocellulosic biomass to glucose.","authors":"Shashi Suhag, Utkarsh Jain, Nidhi Chauhan, Vinita Hooda","doi":"10.1080/10826068.2024.2425970","DOIUrl":"10.1080/10826068.2024.2425970","url":null,"abstract":"<p><p>In the current work, cellulase from <i>Aspergillus niger</i> was successfully immobilized on a novel epoxy-affixed chromium metal-organic framework/chitosan (Cr@-MIL-101/CS) support via covalent method using glutaraldehyde as a crosslinker. The bare and cellulase-bound support was characterized by using various microscopic and spectroscopic techniques. Immobilized cellulase exhibited a high immobilization yield of 0.7 ± 0.01 mg/cm<sup>2</sup>, retaining 87.5 ± 0.04% of its specific activity and displaying enhanced catalytic performance. The immobilized enzyme was maximally active at pH 5.0, temperature 65 °C and 0.9 × 10-2 mg/ml saturating substrate concentration and the half-lives of free and immobilized cellulases were approximately 9 and 19 days, respectively. The decrease in activation energy, enthalpy change, and Gibbs free energy change, coupled with an increase in entropy change upon immobilization, indicated that the enzyme's efficiency, stability, and spontaneity in catalyzing the reaction were enhanced by immobilization. Additionally, the immobilized cellulase efficiently converted rice husk cellulose to glucose, with a quantification limit of 0.05%, linear measurement ranging from 0.1 to 0.9%, and 8.5% conversion efficiency. The present method exhibited a strong correlation (R<sup>2</sup> = 0.998) with the DNS method, validating its reliability. Notably, the epoxy/Cr@-MIL-101/CS-bound cellulase demonstrated impressive thermal and pH stabilities, retaining 50% of its activity at 75 °C and over 96% at pH levels of 4.5 and 5.0 after 12 h. Furthermore, it showed excellent reusability, preserving 80% of its activity after 15 cycles and maintaining 50% of its activity even after 20 days of storage. These results suggest that epoxy/Cr@-MIL-101/CS/cellulase composites could be very effective for large-scale cellulose hydrolysis applications.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"470-490"},"PeriodicalIF":2.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaolei Yang, Qi Li, Xiaoming Bai, Changning Li, Xuemei Li, Tuo Yao
{"title":"Optimal fermentation of <i>Pseudomonas synxantha</i> M1 and metabolomics analysis.","authors":"Xiaolei Yang, Qi Li, Xiaoming Bai, Changning Li, Xuemei Li, Tuo Yao","doi":"10.1080/10826068.2024.2428322","DOIUrl":"10.1080/10826068.2024.2428322","url":null,"abstract":"<p><p>The microbial agents based on plant growth promoting rhizobacteria (PGPR) have become a hot topic in agricultural research, while the optimization of fermentation conditions for PGPR-based microbial agents still lack systematic research. The single-factor and orthogonal experiments were conducted to determine the optimal fermentation conditions of <i>Pseudomonas synxantha</i> M1. The results indicated that the glycerol and shaker speed was the most significant factors that influence the number of bacteria of <i>P. synxantha</i> M1 fermentation liquid. The viable bacteria count of microbial agent reached 7.1 × 10<sup>12</sup> cfu/mL at 36 h, which OD<sub>600</sub> value increased by 116.40% compared to before optimization, and promote the growth of highland barley. Significant differences of metabolites of fermentation liquid was observed in different fermentation times, including organic acids, lipids, and organoheterocyclic compounds using liquid chromatography tandem mass spectrometry (LC-MS/MS). In addition, the fermentation liquid was found to contain indoleacetic acid, glutathione and xanthine at the end of fermentation, which might contribute for the growth of plants as bioactive substances.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"502-512"},"PeriodicalIF":2.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anubhuti Kawatra, Bharti Datten, Rupesh Hans, Pooja Gulati
{"title":"Hybrid magnetic nanocomposites of arginine deiminase with improved stability and recyclability for biomedical applications.","authors":"Anubhuti Kawatra, Bharti Datten, Rupesh Hans, Pooja Gulati","doi":"10.1080/10826068.2024.2430626","DOIUrl":"10.1080/10826068.2024.2430626","url":null,"abstract":"<p><p>Nanocarrier-based immobilization has created new avenues for enhancing the biophysical properties of enzymes. Nanomatrices such as magnetite nanoparticles (MNPs), chitin, and chitosan with large surface areas and tunable morphology have been developed to circumvent the bottlenecks of free enzymes. The present study used MNPs to immobilize the enzyme arginine deiminase (ADI) for improved morphological control, recovery, operational stability, and easy recyclability. Hybrid magnetic arginine deiminase cross-linked enzyme aggregate (mADI-CLEA) was developed for the first time by co-aggregating ADI with magnetite nanocomposites, followed by its cross-linkage with glutaraldehyde. Structural analysis by DLS/ZETA, SEM, and FT-IR revealed their highly stable and robust nature. The resulting mADI-CLEA exhibited higher pH resistivity and thermostability than ADI-CLEA. Reusability and storage stability assay indicated that mADI-CLEA maintained more than 60% residual activity even after seven batch cycles and was stable for more than 70 days. These hybrid magnetic aggregates of ADI offer an economical and stable alternative for biomedical applications of ADI.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"513-520"},"PeriodicalIF":2.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated formic acid and deep eutectic solvent mediated sustainable synthesis of cellulose nanocrystals from <i>Sterculia foetida</i> shells.","authors":"Kurappalli Rohil Kumar, Nirajha Vishnu, Gnanabarathi C S, Kiran Babu Uppuluri, Rangabhashiyam Selvasembian","doi":"10.1080/10826068.2024.2419873","DOIUrl":"10.1080/10826068.2024.2419873","url":null,"abstract":"<p><p>The present study reports the green synthesis of cellulose nanocrystals from the shells of <i>Sterculia foetida</i> (SFS) cellulose. Three different methods, alkali, acid and organic acid, were screened for the maximum cellulose extraction. A maximum cellulose yield, 30.6 ± 0.84 <i>w/w</i>, was obtained using 90% formic acid at 110 °C in 120 min. The extracted cellulose was characterized and identified by instrumental analyses. SEM analysis showed skeletal rod-like microfibril structures and similar intra-fibrillar widths. CP/MAS <sup>13</sup>C NMR and FTIR spectrum revealed the purity of cellulose and the absence of other components like hemicellulose and lignin. XRD study revealed a cellulose crystallinity index of 88.07%. BET analysis showed a good surface area (3.3213 m<sup>2</sup>/g) and a micro-pore area of 1.871 m<sup>2</sup>/g. The cellulose nanocrystals were synthesized from the extracted cellulose using deep eutectic solvents (DES), choline chloride and lactic acid (1:2 ratio). The cellulose nanocrystals (CNC) synthesized from DES-based exhibited zeta potential and particle size of -16.7 mV and 576.3 d.nm. DES-synthesized cellulose nanocrystals were spherical-like shapes, as observed from TEM images. The present results exposed that formic acid is an effective and green catalyst for the extraction of cellulose and DES for the sustainable synthesis of CNC.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"403-416"},"PeriodicalIF":2.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing Cu/Zn Superoxide Dismutase (SOD1) production in <i>Pichia pastoris</i>: challenges, strategies, current research status, and future directions.","authors":"Abdulqader Al-Adeeb, Sahibzada Muhammad Aqeel, Hend Sadeq Aljaberi, Qiuya Gu, Shuoqi Jiang, Siqi Ma, Xiaobin Yu","doi":"10.1080/10826068.2025.2484596","DOIUrl":"https://doi.org/10.1080/10826068.2025.2484596","url":null,"abstract":"<p><p>Cu/Zn Superoxide Dismutase (SOD1) plays a critical role in alleviating oxidative stress by catalyzing the conversion of superoxide radicals into oxygen and hydrogen peroxide. This review presents an in-depth analysis of the challenges and strategies involved in optimizing SOD1 production, with a focus on <i>Pichia pastoris</i> as an expression system. Key approaches such as the strategic selection of expression vectors, codon optimization, and the fine-tuning of fermentation parameters to maximize SOD1 yield are thoroughly explored. Advances in protein engineering, the co-expression of molecular chaperones, and the use of stabilizers and additives are also examined for their role in improving SOD1 stability and functionality. The review highlights the significant biomedical and industrial applications of overexpressed and thermostable SOD1, uncovering novel opportunities for therapeutic interventions and biotechnological innovations. Additionally, emerging technologies such as omics-based approaches, advanced protein engineering tools, and alternative host systems are discussed, offering new avenues for future research. This comprehensive review underscores the transformative potential of SOD1 optimization, positioning it at the forefront of scientific and technological advancements.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-21"},"PeriodicalIF":2.0,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143721133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaitra Chandrakant Shanbhag, Raini Mohd Hanzala Salimuddin, Regupathi Iyyaswami, Prasanna D Belur
{"title":"Simultaneous partitioning of multiple bioactive compounds from <i>Garcinia indica</i> rinds in a three-liquid-phase extraction systems.","authors":"Chaitra Chandrakant Shanbhag, Raini Mohd Hanzala Salimuddin, Regupathi Iyyaswami, Prasanna D Belur","doi":"10.1080/10826068.2025.2483240","DOIUrl":"https://doi.org/10.1080/10826068.2025.2483240","url":null,"abstract":"<p><p>Simultaneous extraction and purification of principal bioactive compounds, anthocyanins (ACNs), garcinol (GL), and hydroxycitric acid (HCA) from the rinds of <i>Garcinia indica</i> (Kokum) fruits in a single-step using Three Liquid Phase Systems (TLPS) were investigated. Among the various phase-forming components studied, TLPS formed by n-hexane-ethanol-(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>-water system was considered for partitioning GL into the n-hexane-rich top phase, ACNs into the ethanol-rich middle phase, and HCA into the aqueous salt-rich bottom phase. The present system was even able to separate carbohydrates into the bottom phase, which can be detrimental to the stability of ACNs. The effect of n-hexane, ethanol, and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> concentration on the partitioning behavior of biomolecules was analyzed. The TLPS composed of water-n-hexane-ethanol-(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> could purify and extract 95.08% of ACNs, 95.33% of GL, and 67.98% of HCA in a single-step extraction process while the other extraction methods require multi-step extraction process to separate these three compounds. The effect of pH studies on the partitioning characteristics of biomolecules revealed that pH 4 is optimum and more efficient than the native pH of the system to achieve maximum yield of all the bioactive compounds.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-16"},"PeriodicalIF":2.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143701360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elaine Cristina da Silva, Leandro Paes de Brito, Francisca Crislândia Oliveira Silva, Dayane da Silva Santos, Allyson Andrade Mendonça, Raquel Pedrosa Bezerra, Paulo Antônio Galindo Soares, Marcos Antônio de Morais Junior, Ana Lúcia Figueiredo Porto, Maria Taciana Holanda Cavalcanti
{"title":"Exploiting the bacterial exopolysaccharide bioconversion using residual cheese whey as culture medium.","authors":"Elaine Cristina da Silva, Leandro Paes de Brito, Francisca Crislândia Oliveira Silva, Dayane da Silva Santos, Allyson Andrade Mendonça, Raquel Pedrosa Bezerra, Paulo Antônio Galindo Soares, Marcos Antônio de Morais Junior, Ana Lúcia Figueiredo Porto, Maria Taciana Holanda Cavalcanti","doi":"10.1080/10826068.2025.2479829","DOIUrl":"https://doi.org/10.1080/10826068.2025.2479829","url":null,"abstract":"<p><p>Cheese whey (CW) represents a potential substrate in biotechnological processes due to the presence of valuable nutrients in its composition. Therefore, CW is used as a low-cost substrate in fermentation for microbial growth and the synthesis of value-added compounds, while mitigating the environmental impact that this by-product can cause. The current study aimed to obtain exopolysaccharides (EPS) by fermenting lactic acid bacteria in CW followed by optimizing production using Response Surface Methodology (RSM) and evaluating the biological properties. Out of 64 isolates, <i>Enterococcus</i> sp. 133 V exhibited a high concentration with 5.58 mg/mL of EPS. With optimization using RSM, 21.74 mg/mL of EPS was obtained with temperature and fermentation time fixed at 42 °C and 22 h, respectively. The characterization of the new EPS revealed a hetero-polysaccharide consisting of galactose, glucose, mannose, arabinose, rhamnose and fucose, including proteins and uric acid in the structure. With a concentration of 2 mg/mL, the purified EPS showed good scavenging effects against DPPH (27%), ABTS (72%) and superoxide (43%), except for the hydroxyl radical (1.29%) which needs a high EPS concentration. These findings underscore the interest in using cheap residue as culture medium to produce biopolymers with potential for applications, particularly in the food and biotechnology sectors.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-10"},"PeriodicalIF":2.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143674480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}