Jun Zhang, Ying Zhang, Wen Luo, Zhiyuan Wang, Pengmei Lv, Zhongming Wang
{"title":"A UHPLC-QE-MS-based metabolomics approach for the evaluation of fermented lipase by an engineered <i>Escherichia coli</i>.","authors":"Jun Zhang, Ying Zhang, Wen Luo, Zhiyuan Wang, Pengmei Lv, Zhongming Wang","doi":"10.1080/10826068.2024.2423665","DOIUrl":null,"url":null,"abstract":"<p><p>Using an engineered <i>Escherichia coli</i> to produce lipase and can easily achieve high-level expression. The investigation of biochemical processes during lipase fermentation, approached from a metabolomics perspective, will yield novel insights into the efficient secretion of recombinant proteins. In this study, the lipase batch fermentation was carried out first with enzyme activity of 36.83 U/mg cells. Then, differential metabolites and metabolic pathways were identified using an untargeted metabolomics approach through comparative analysis of various fermentation periods. In total, 574 metabolites were identified: 545 were up-regulated and 29 were down-regulated, mainly in 153 organic acids and derivatives, 160 organoheterocyclic compounds, 64 lipids and lipid-like molecules, and 58 organic oxygen compounds. Through metabolic pathways and network analysis, it could be found that tryptophan metabolism was of great significance to lipase production, which could affect the secretion and synthesis of recombinant protein. In addition, the promotion effects of cell growth by varying concentrations of indole acetic acid serve to validate the results obtained from tryptophan metabolism. This study offers valuable insights into metabolic regulation of engineered <i>E. coli</i>, indicating that its fermentation bioprocess can be systematically designed according to metabolomics findings to enhance recombinant protein production.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-13"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2423665","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Using an engineered Escherichia coli to produce lipase and can easily achieve high-level expression. The investigation of biochemical processes during lipase fermentation, approached from a metabolomics perspective, will yield novel insights into the efficient secretion of recombinant proteins. In this study, the lipase batch fermentation was carried out first with enzyme activity of 36.83 U/mg cells. Then, differential metabolites and metabolic pathways were identified using an untargeted metabolomics approach through comparative analysis of various fermentation periods. In total, 574 metabolites were identified: 545 were up-regulated and 29 were down-regulated, mainly in 153 organic acids and derivatives, 160 organoheterocyclic compounds, 64 lipids and lipid-like molecules, and 58 organic oxygen compounds. Through metabolic pathways and network analysis, it could be found that tryptophan metabolism was of great significance to lipase production, which could affect the secretion and synthesis of recombinant protein. In addition, the promotion effects of cell growth by varying concentrations of indole acetic acid serve to validate the results obtained from tryptophan metabolism. This study offers valuable insights into metabolic regulation of engineered E. coli, indicating that its fermentation bioprocess can be systematically designed according to metabolomics findings to enhance recombinant protein production.
期刊介绍:
Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.