{"title":"Targeted for destruction: degradation of singlet oxygen-damaged chloroplasts.","authors":"Matthew D Lemke, Jesse D Woodson","doi":"10.1080/15592324.2022.2084955","DOIUrl":"https://doi.org/10.1080/15592324.2022.2084955","url":null,"abstract":"<p><p>Photosynthesis is an essential process that plants must regulate to survive in dynamic environments. Thus, chloroplasts (the sites of photosynthesis in plant and algae cells) use multiple signaling mechanisms to report their health to the cell. Such signals are poorly understood but often involve reactive oxygen species (ROS) produced from the photosynthetic light reactions. One ROS, singlet oxygen (<sup>1</sup>O<sub>2</sub>), can signal to initiate chloroplast degradation, but the cellular machinery involved in identifying and degrading damaged chloroplasts (<i>i.e</i>., chloroplast quality control pathways) is unknown. To provide mechanistic insight into these pathways, two recent studies have investigated degrading chloroplasts in the <i>Arabidopsis thaliana</i><sup>1</sup>O<sub>2</sub> over-producing <i>plastid ferrochelatase two</i> (<i>fc2</i>) mutant. First, a structural analysis of degrading chloroplasts was performed with electron microscopy, which demonstrated that damaged chloroplasts can protrude into the central vacuole compartment with structures reminiscent of fission-type microautophagy. <sup>1</sup>O<sub>2</sub>-stressed chloroplasts swelled before these interactions, which may be a mechanism for their selective degradation. Second, the roles of autophagosomes and canonical autophagy (macroautophagy) were shown to be dispensable for <sup>1</sup>O<sub>2</sub>-initiated chloroplast degradation. Instead, putative fission-type microautophagy genes were induced by chloroplast <sup>1</sup>O<sub>2</sub>. Here, we discuss how these studies implicate this poorly understood cellular degradation pathway in the dismantling of <sup>1</sup>O<sub>2</sub>-damaged chloroplasts.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2084955"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10476646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of endophytic fungi with ACC deaminase-producing isolated from halophyte <i>Kosteletzkya Virginica</i>.","authors":"Xiaomin Wang, Zengyuan Tian, Yu Xi, Yuqi Guo","doi":"10.1080/15592324.2022.2152224","DOIUrl":"https://doi.org/10.1080/15592324.2022.2152224","url":null,"abstract":"<p><p>Seashore mallow (<i>Kosteletzkya virginica</i>), as a noninvasive perennial halophytic oilseed-producing dicot, is native from the Gulf to the Atlantic coasts of the U.S. The purpose of our research was to investigate 1-aminocyclopropane-1carboxylic acid deaminase (ACCD) producing endophytic fungi from <i>K.virginica</i>. A total of 59 endophytic fungal strains, isolated from roots in <i>K.virginica</i> of seedlings, were grouped into 12 genera including in <i>Penicillium, Aspergillus, Fusarium, Trichoderma, Rhizopycnis</i> sp., <i>Ceriporia Donk, Trametes</i> sp., <i>Schizophyllum commune</i> sp., <i>Alternaria, Cladosporium, Cylindrocarpon</i>, and <i>Scytalidium</i> according to sequences of ITS. The ACD activity of 10 endophytic fungi isolated was detected. <i>T.asperellum</i> had the highest ACC deaminase activity among all 10 isolated <b>genera of</b> fungal strains, followed by <i>T. viride</i>. <b>Dry weight and fresh weight of plant</b>, plant height, root length, SOD activity, and chlorophyll content of wheat and soybean inoculated with <i>T.asperellum</i> <b>or</b> <i>T. viride</i> was increased compared with non-inoculated control plants under non salt or salt stress. Further analysis showed that <i>T.asperellum</i> or <i>T.viride</i> strains induced downregulation of the expression of ethylene synthesis-related genes such as ACC oxidase (ACO) and ACC synthase (ACS), thereby reducing ethylene synthesis and damage to plants under salt stress. These endophytic fungi can be used as alternative bioinoculants to increase crop yield in saline soil.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2152224"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721417/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10481704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Cao, Qing Zhao, Fubin Liu, Lei Zheng, Xingdong Lin, Mingyue Pan, Xuejun Tan, Ge Sun, Kewei Zhao
{"title":"Drug Value of Drynariae Rhizoma Root-Derived Extracellular Vesicles for Neurodegenerative Diseases Based on Proteomics and Bioinformatics.","authors":"Yue Cao, Qing Zhao, Fubin Liu, Lei Zheng, Xingdong Lin, Mingyue Pan, Xuejun Tan, Ge Sun, Kewei Zhao","doi":"10.1080/15592324.2022.2129290","DOIUrl":"https://doi.org/10.1080/15592324.2022.2129290","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are nano-sized membrane vesicles released by various cell types. Mammalian EVs have been studied in-depth, but the role of plant EVs has rarely been explored. For the first time, EVs from <i>Drynariae Rhizoma</i> roots were isolated and identified using transmission electron microscopy and a flow nano analyzer. Proteomics and bioinformatics were applied to determine the protein composition and complete the functional analysis of the EVs. Seventy-seven proteins were identified from <i>Drynariae Rhizoma</i> root-derived EVs, with enzymes accounting for 47% of the proteins. All of the enzymes were involved in important biological processes in plants. Most of them, including NAD(P)H-quinone oxidoreductase, were enriched in the oxidative phosphorylation pathway in plants and humans, and Alzheimer's disease, Huntington's disease, and Parkinson's disease, which are associated with oxidative stress in humans. These findings suggested that EVs from <i>Drynariae Rhizoma</i> roots could alleviate such neurological diseases and that enzymes, especially NAD(P)H-quinone oxidoreductase, might play an important role in the process.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2129290"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33489070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baolu Cui, Min Huang, Chongdai Guo, Ruihong Li, Yuqi Wang
{"title":"Cloning and expression analysis of DnMSI1 gene in orchid species <i>Dendrobium nobile</i> Lindl.","authors":"Baolu Cui, Min Huang, Chongdai Guo, Ruihong Li, Yuqi Wang","doi":"10.1080/15592324.2021.2021649","DOIUrl":"https://doi.org/10.1080/15592324.2021.2021649","url":null,"abstract":"<p><p>WD40 repeat proteins, the homologs of yeast MSI1, are conserved in plants, participating in protein complexes and playing fundamental functions in plant development. Although several MSI1-like proteins have been cloned and characterized in plants, the roles of MSI1-like proteins in the biennial ornamental plant, <i>Dendrobium nobile</i> Lindl, are still unclear. Here, we report the cloning of the <i>DnMSI1</i> gene from <i>Dendrobium nobile</i> Lindl with RACE technology. We found that <i>DnMSI1</i> expression was induced by GA<sub>3</sub> and TDZ but inhibited by ABA, PP333, and drought and salt stress. Furthermore, <i>DnMSI1</i> over-expression in <i>Arabidopsis</i> resulted in decreased tolerance to NaCl stress. These results suggest that DnMSI1 plays negative regulation roles in regulating salinity-stress resistance in <i>Dendrobium nobile</i> Lindl.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2021649"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39680213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a GFP biosensor reporter for the unfolded protein response-signaling pathway in plants: incorporation of the bZIP60 intron into the GFP gene.","authors":"Rina Carrillo, David A Christopher","doi":"10.1080/15592324.2022.2098645","DOIUrl":"https://doi.org/10.1080/15592324.2022.2098645","url":null,"abstract":"<p><p>The ability to measure the activation of the unfolded protein response (UPR) in plants is important when they are exposed to stressful environments. To this end, we developed a unique and versatile biosensor-reporter system to indicate the activation of UPR in living plant cells. The small cytoplasmically spliced intron from the <i>bZIP60</i> locus was incorporated into the 5' end of the GFP gene, creating the 35S::<i>bZIP60</i> intron:GFP construct. When this construct is transiently expressed in <i>Arabidopsis</i> protoplasts, the presence of the <i>bZIP60</i> intron prevents GFP mRNA from being translated under non-UPR conditions. However, when UPR is activated, the IRE1 kinase/ribonuclease splices this intron from the GFP mRNA and its translation proceeds, generating GFP fluorescence. We demonstrated the utility of the system in <i>Arabidopsis</i> leaf protoplasts treated with DTT, which is a chemical inducer of UPR, followed by visualization and quantification using confocal microscopy. The 35S::<i>bZIP60</i> intron:GFP construct was also expressed in protoplasts from an overexpressor line containing the coding sequence for the UPR-induced, protein folding chaperone, protein disulfide isomerase-9 (PDI9). PDI9 also influences the strength of the UPR signaling pathway. Protoplasts from WT and <i>PDI9</i> overexpressor plants treated with DTT exhibited significantly higher GFP fluorescence relative to untreated protoplasts, indicating that the <i>bZIP60</i> intron was spliced from the GFP mRNA in response to activation of UPR. RT-PCR further confirmed the higher induction of <i>PDI9</i> and <i>bZIP60</i> (total and spliced) mRNA levels in DTT-treated protoplasts relative to controls. This system can be adapted for monitoring crop stress and for basic studies dissecting the UPR signaling pathway.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2098645"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40606940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemically defined elicitors activate priming in tomato seedlings.","authors":"Kiran R Kharat, Raveendran Pottathil","doi":"10.1080/15592324.2022.2095143","DOIUrl":"https://doi.org/10.1080/15592324.2022.2095143","url":null,"abstract":"<p><p>Tomato (<i>Solanum lycopersicum</i> L.) is an important crop that possesses about 35,000 genes. The treatment of plants with elicitors or pathogen attacks causes a cascade of defense reactions. We investigated tomato responses to the BamFX<sup>TM</sup> solution containing Zn and Cu elicitors and report the results of comparative transcriptome analysis of tomato seeds treated with Zn and Cu elicitors. The seeds were treated with optimum concentrations of Bam-FX solutions and subjected to cold methanolic extraction methods to obtain the secondary metabolites produced within them at different time intervals post-Bam-FX treatment. The metabolite mixture was analyzed using gas chromatography-mass spectrometry (GCMS). In transcriptome sequencing, GO and KEGG analyses revealed that the majority of the DEGs in BamFx-treated tomato was associated with primary and secondary metabolism, plant hormone signal transduction, TF regulation, transport, and responses to stimuli.The secondary metabolites found in the BamFX treated tomato seedlings - Esters of Fumaric acid, Succinic acid etc. The transcript levels of most auxin transporter-encoding genes changed significantly in the BamFX-treated seedlings (e.g., Solyc01g007010.3, a RING-type E3 ubiquitin transferase). The gene Solyc07g061720.3 for Gibberellin 2-oxidase and the Phorbol-ester/DAG-type domain-containing protein (Solyc02g068680.1) associated with the intracellular signaling genes were found upregulated in the BamFx-treated seeds. The time-dependent effect of the BamFX (1:500 for 60 min) was found to be regulating Abscisic acid signaling pathway genes (Solyc09g015380.1). This study identified many candidate genes for future functional analyses and laid a theoretical foundation for an improved understanding of the molecular mechanisms involved in the BamFx treatment of tomatoes to improve stress resistance.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2095143"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10408825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Building bridges: mycelium-mediated plant-plant electrophysiological communication.","authors":"Matthew Adam Thomas, Robin Lewis Cooper","doi":"10.1080/15592324.2022.2129291","DOIUrl":"https://doi.org/10.1080/15592324.2022.2129291","url":null,"abstract":"<p><p>Whether through root secretions or by emitting volatile organic compounds, plant communication has been well-documented. While electrical activity has been documented in plants and mycorrhizal bodies on the individual and ramet, electrical propagation as a means of communication <i>between</i> plants has been hypothesized but understudied. This study aimed to test the hypothesis that plants can communicate with one another <i>electrically</i> via conductively isolated mycelial pathways. We created a bio-electric circuit linking two plants using a mycelial network grown from a blend of mycorrhizal fungi which was directly inoculated onto potato dextrose agar, or onto the host plants placed on the agar. The mycelium that grew was forced to cross, or \"bridge,\" an air gap between the two islands of agar - thus forming the isolated conductive pathway between plants. Using this plant-fungal biocircuit we assessed electrical propagation between <i>Pisum sativum</i> and <i>Cucumis sativus</i>. We found that electrical signals were reliably conducted across the mycelial bridges from one plant to another upon the induction of a wound response. Our findings provide evidence that mechanical input can be communicated between plant species and opens the door to testing how this information can affect plant and fungal physiology.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2129291"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10426697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Ilyas, Safdar Hussain Shah, Yasunari Fujita, Kyonoshin Maruyama, Kazuo Nakashima, Kazuko Yamaguchi-Shinozaki, Asad Jan
{"title":"OsTZF1, a CCCH-tandem zinc finger protein gene, driven under own promoter produces no pleiotropic effects and confers salt and drought tolerance in rice.","authors":"Muhammad Ilyas, Safdar Hussain Shah, Yasunari Fujita, Kyonoshin Maruyama, Kazuo Nakashima, Kazuko Yamaguchi-Shinozaki, Asad Jan","doi":"10.1080/15592324.2022.2142725","DOIUrl":"https://doi.org/10.1080/15592324.2022.2142725","url":null,"abstract":"<p><p>Different abiotic stresses induce <i>OsTZF1</i>, a tandem CCCH-type zinc finger domain gene, in rice. Here, we report that transgenic rice plants overexpressing <i>OsTZF1</i> under own promoter (<i>P<sub>OsTZF1</sub>:OsTZF1-</i>OX [for overexpression]) transferred to soil showed normal growth similar to vector control plants. The <i>P<sub>OsTZF1</sub>:OsTZF1-</i>OX produced normal leaves without any lesion mimic phenotype and exhibited normal seed setting. The <i>P<sub>OsTZF1</sub>:OsTZF1-</i>OX plants showed significantly increased tolerance to salt and drought stresses and enhanced post stress recovery. Microarray analysis revealed a total of 846 genes up-regulated and 360 genes down-regulated in <i>P<sub>OsTZF1</sub>:OsTZF1-</i>OX salt-treated plants. Microarray analysis of <i>P<sub>OsTZF1:</sub>OsTZF1-</i>OX plants showed the regulation of many abiotic stress tolerance genes. These results suggest that <i>OsTZF1</i>-OX under own promoter show abiotic stress tolerance and produces no pleiotropic effect on phenotype of transgenic rice plant.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2142725"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10426699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grant Mc Gowan, Gayani Ekanayake, Robert A Ingle, Antje Heese
{"title":"Novel roles for Arabidopsis dynamin-related proteins DRP1A and DRP2B in resistance against <i>Botrytis cinerea</i> fungal infection.","authors":"Grant Mc Gowan, Gayani Ekanayake, Robert A Ingle, Antje Heese","doi":"10.1080/15592324.2022.2129296","DOIUrl":"https://doi.org/10.1080/15592324.2022.2129296","url":null,"abstract":"<p><p>Arabidopsis DYNAMIN-RELATED PROTEIN1A (<i>At</i>DRP1A) and <i>At</i>DRP2B are large GTPases that function together in endocytosis for effective cytokinesis, cell enlargement and development. A recent study shows that these DRPs contribute to ligand-induced endocytosis of the immune receptor FLAGELLIN SENSING2 (<i>At</i>FLS2) to modulate flg22-immune signaling, and they are required for immunity against <i>Pseudomonas syringae</i> pv. <i>tomato</i> bacteria. Here, we demonstrate that <i>atdrp1a</i> and <i>atdrp2b</i> single mutants showed increased susceptibility to <i>Botrytis cinerea</i> indicating that <i>At</i>DRP1A and <i>At</i>DRP2B are necessary for effective resistance against this necrotrophic fungus. Thus, we expanded our limited understanding of clathrin endocytic accessory proteins in immunity against plant pathogens.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2129296"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33490960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phenotypic effect of growth media on <i>Arabidopsis thaliana</i> root hair growth.","authors":"Naomi Claeijs, Kris Vissenberg","doi":"10.1080/15592324.2022.2104002","DOIUrl":"https://doi.org/10.1080/15592324.2022.2104002","url":null,"abstract":"<p><p>Over the years, many different growth media have been used to grow <i>Arabidopsis thaliana in vitro</i> in petri dishes. For these media the nutrient composition may vary, sugars may or may not be added, the medium may or may not be buffered and there is a choice between different gelling agents. The magnitude of possible combinations of these variables obstructs easy comparison of seedling phenotypes grown on the different media. This is especially obvious when it concerns the study of root hairs that are extremely sensitive to changes in their environment. To demonstrate this effect, we have grown <i>Arabidopsis thaliana</i> wild-type seeds on 18 different combinations of growth media and quantified root hair development. Comparison of root hair length and the respective root hair profiles identified the media that result in the formation of the longest root hairs. On these favored media they elongate through tip growth at a constant growth rate until they reach their final length (around 0.6 mm) at a distance of ±4 mm from the root tip.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2104002"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9466613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40635134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}