Muhammad Ilyas, Safdar Hussain Shah, Yasunari Fujita, Kyonoshin Maruyama, Kazuo Nakashima, Kazuko Yamaguchi-Shinozaki, Asad Jan
{"title":"OsTZF1, a CCCH-tandem zinc finger protein gene, driven under own promoter produces no pleiotropic effects and confers salt and drought tolerance in rice.","authors":"Muhammad Ilyas, Safdar Hussain Shah, Yasunari Fujita, Kyonoshin Maruyama, Kazuo Nakashima, Kazuko Yamaguchi-Shinozaki, Asad Jan","doi":"10.1080/15592324.2022.2142725","DOIUrl":"https://doi.org/10.1080/15592324.2022.2142725","url":null,"abstract":"<p><p>Different abiotic stresses induce <i>OsTZF1</i>, a tandem CCCH-type zinc finger domain gene, in rice. Here, we report that transgenic rice plants overexpressing <i>OsTZF1</i> under own promoter (<i>P<sub>OsTZF1</sub>:OsTZF1-</i>OX [for overexpression]) transferred to soil showed normal growth similar to vector control plants. The <i>P<sub>OsTZF1</sub>:OsTZF1-</i>OX produced normal leaves without any lesion mimic phenotype and exhibited normal seed setting. The <i>P<sub>OsTZF1</sub>:OsTZF1-</i>OX plants showed significantly increased tolerance to salt and drought stresses and enhanced post stress recovery. Microarray analysis revealed a total of 846 genes up-regulated and 360 genes down-regulated in <i>P<sub>OsTZF1</sub>:OsTZF1-</i>OX salt-treated plants. Microarray analysis of <i>P<sub>OsTZF1:</sub>OsTZF1-</i>OX plants showed the regulation of many abiotic stress tolerance genes. These results suggest that <i>OsTZF1</i>-OX under own promoter show abiotic stress tolerance and produces no pleiotropic effect on phenotype of transgenic rice plant.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2142725"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10426699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grant Mc Gowan, Gayani Ekanayake, Robert A Ingle, Antje Heese
{"title":"Novel roles for Arabidopsis dynamin-related proteins DRP1A and DRP2B in resistance against <i>Botrytis cinerea</i> fungal infection.","authors":"Grant Mc Gowan, Gayani Ekanayake, Robert A Ingle, Antje Heese","doi":"10.1080/15592324.2022.2129296","DOIUrl":"https://doi.org/10.1080/15592324.2022.2129296","url":null,"abstract":"<p><p>Arabidopsis DYNAMIN-RELATED PROTEIN1A (<i>At</i>DRP1A) and <i>At</i>DRP2B are large GTPases that function together in endocytosis for effective cytokinesis, cell enlargement and development. A recent study shows that these DRPs contribute to ligand-induced endocytosis of the immune receptor FLAGELLIN SENSING2 (<i>At</i>FLS2) to modulate flg22-immune signaling, and they are required for immunity against <i>Pseudomonas syringae</i> pv. <i>tomato</i> bacteria. Here, we demonstrate that <i>atdrp1a</i> and <i>atdrp2b</i> single mutants showed increased susceptibility to <i>Botrytis cinerea</i> indicating that <i>At</i>DRP1A and <i>At</i>DRP2B are necessary for effective resistance against this necrotrophic fungus. Thus, we expanded our limited understanding of clathrin endocytic accessory proteins in immunity against plant pathogens.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2129296"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33490960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phenotypic effect of growth media on <i>Arabidopsis thaliana</i> root hair growth.","authors":"Naomi Claeijs, Kris Vissenberg","doi":"10.1080/15592324.2022.2104002","DOIUrl":"https://doi.org/10.1080/15592324.2022.2104002","url":null,"abstract":"<p><p>Over the years, many different growth media have been used to grow <i>Arabidopsis thaliana in vitro</i> in petri dishes. For these media the nutrient composition may vary, sugars may or may not be added, the medium may or may not be buffered and there is a choice between different gelling agents. The magnitude of possible combinations of these variables obstructs easy comparison of seedling phenotypes grown on the different media. This is especially obvious when it concerns the study of root hairs that are extremely sensitive to changes in their environment. To demonstrate this effect, we have grown <i>Arabidopsis thaliana</i> wild-type seeds on 18 different combinations of growth media and quantified root hair development. Comparison of root hair length and the respective root hair profiles identified the media that result in the formation of the longest root hairs. On these favored media they elongate through tip growth at a constant growth rate until they reach their final length (around 0.6 mm) at a distance of ±4 mm from the root tip.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2104002"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9466613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40635134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunhao Zhu, Shuping Peng, Le Zhao, Weisheng Feng, Chengming Dong
{"title":"Genome-wide identification and characterization of the HD-Zip gene family and expression analysis in response to stress in <i>Rehmannia glutinosa</i> Libosch.","authors":"Yunhao Zhu, Shuping Peng, Le Zhao, Weisheng Feng, Chengming Dong","doi":"10.1080/15592324.2022.2096787","DOIUrl":"https://doi.org/10.1080/15592324.2022.2096787","url":null,"abstract":"<p><p>The HD-Zip family of transcription factors is unique to the plant kingdom, and play roles in modulation of plant growth and response to environmental stresses. <i>R. glutinosa</i> is an important Chinese medicinal material. Its yield and quality are susceptible to various stresses. The HD-Zip transcription factors is unique to the plant, and roles in modulation of plant growth and response to environmental stresses. However, there is no relevant research on the HD-ZIP of <i>R. glutinosa</i>. In this study, 92 HD-Zip transcription factors were identified in <i>R. glutinosa</i>, and denominated as RgHDZ1-RgHDZ92. Members of RgHDZ were classified into four groups (HD-ZipI-IV) based on the phylogenetic relationship of <i>Arabidopsis</i> HD-Zip proteins, and each group contains 38, 18, 17, and 19 members, respectively. Expression analyses of <i>RgHDZ</i> genes based on transcriptome data showed that the expression of these genes could be induced by the endophytic fungus of <i>R. glutinosa</i>. Additionally, we showed that <i>RgHDZ</i> genes were differentially expressed in response to drought, waterlogging, temperature, and salinity treatments. This study provides important information for different expression patterns of stress-responsive HD-Zip and may contribute to the better understanding of the different responses of plants to biotic and abiotic stresses, and provide a molecular basis for the cultivation of resistant varieties of <i>R. glutinosa</i>.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2096787"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9336491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40638574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Song Tan, Xi Zhang, Qi Zhang, Yu-Meng Li, Peng Zhang, Li-Ping Yin
{"title":"HRM and CRAC in MxIRT1 act as iron sensors to determine MxIRT1 vesicle-PM fusion and metal transport.","authors":"Song Tan, Xi Zhang, Qi Zhang, Yu-Meng Li, Peng Zhang, Li-Ping Yin","doi":"10.1080/15592324.2021.2005881","DOIUrl":"https://doi.org/10.1080/15592324.2021.2005881","url":null,"abstract":"<p><p>The IRON-REGULATED TRANSPORTER1 (IRT1) is critical for iron uptake in roots, and its exocytosis to the plasma membrane (PM) is regulated by detergent-resistant membranes. However, studies on IRT1 exocytosis and function in response to iron status are limited. Presently, we found that the histidine-rich motif (HRM) of MxIRT1 could bind to iron directly and HRM determined the delivery of MxIRT1 to the PM, after which the cholesterol recognition amino acid consensus (CRAC) motif-regulated MxIRT1 mediated metal transport. IMAC assay revealed that H192 was the vital site for HRM binding to Fe<sup>2+</sup>, and metal-binding activity was stopped after the deletion of HRM (MxIRT1∆HM) or in H192 site-directed mutants (H<sub>192</sub>A). MxIRT1∆HM or H<sub>192</sub>A in transgenic yeast and Arabidopsis failed to localize in the PM and displayed impaired iron absorption. In the PM, Y266 in CRAC was required for metal transport; Y266A transgenic Arabidopsis displayed the same root length, Cd<sup>2+</sup> flux, and Fe concentration as Arabidopsis mutant <i>irt1</i> under iron-deficient conditions. Therefore, H192 in HRM may be an iron sensor to regulate delivery of MxIRT1 vesicles to the PM after binding with iron; Y266 in CRAC acts as an iron sensor for active metal transport under iron-deficient conditions.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2005881"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39647968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huabin Liu, Rong Zhu, Kai Shu, Weixiang Lv, Song Wang, Chengliang Wang
{"title":"Aluminum stress signaling, response, and adaptive mechanisms in plants.","authors":"Huabin Liu, Rong Zhu, Kai Shu, Weixiang Lv, Song Wang, Chengliang Wang","doi":"10.1080/15592324.2022.2057060","DOIUrl":"https://doi.org/10.1080/15592324.2022.2057060","url":null,"abstract":"<p><p>Over 40% of arable land in the world is acidic. Al stress has become a global agricultural problem affecting plant growth and limiting crop production in acidic soils. Plants have evolved different regulatory mechanisms of adaptation to exogenous environmental challenges, such as Al stress, by altering their growth patterns. In the past decades, several key genes involved in plant response to Al stress and the mechanism of Al detoxification have been revealed. However, the signaling pathways of plant response to Al stress and the regulatory mechanism of plant Al tolerance remain poorly understood. In this review, we summarized the findings of recent studies on the plant Al tolerance mechanism and the molecular regulation mechanism of phytohormones in response to Al stress. This review improves our understanding of the regulatory mechanisms of plants in response to Al stress and provides a reference for the breeding of Al-tolerant crops.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2057060"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045826/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9178722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cesium could be used as a proxy for potassium in mycorrhizal <i>Medicago truncatula</i>.","authors":"Arjun Kafle, Kevin Garcia","doi":"10.1080/15592324.2022.2134676","DOIUrl":"https://doi.org/10.1080/15592324.2022.2134676","url":null,"abstract":"<p><p>Arbuscular mycorrhizal (AM) fungi interact with the roots of most land plants and help them to acquire various mineral resources from the soil, including potassium (K<sup>+</sup>). However, tracking K<sup>+</sup> movement in AM symbiosis remains challenging. Recently, we reported that rubidium can be used as a proxy for K<sup>+</sup> in mycorrhizal <i>Medicago truncatula</i>. In the present work, we investigated the possibility of using cesium (Cs<sup>+</sup>) as another proxy for K<sup>+</sup> in AM symbiosis. Plants were placed in growing systems that include a separate compartment only accessible to the AM fungus <i>Rhizophagus irregularis</i> isolate 09 and in which various amounts of cesium chloride (0 mM, 0.5 mM, 1.5 mM, or 3.75 mM) were supplied. Plants were watered with sufficient K<sup>+</sup> or K<sup>+</sup>-free nutrient solutions, and shoot and root biomass, fungal colonization, and K<sup>+</sup> and Cs<sup>+</sup> concentrations were recorded seven weeks after inoculation. Our results indicate that Cs<sup>+</sup> accumulated in plant tissues only when K<sup>+</sup> was present in the nutrient solution and when the highest concentration of Cs<sup>+</sup> was used in the fungal compartment. Consequently, we conclude that Cs<sup>+</sup> could be used as a proxy for K<sup>+</sup> in AM symbiosis, but with serious limitations.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":"17 1","pages":"2134676"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10471755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Zhang, Ziyan Tang, Ying Zhang, Lin Liu, Dan Zhao, Xigang Liu, Lin Guo, Jingao Dong
{"title":"TOP1α suppresses lateral root gravitropism in Arabidopsis.","authors":"Hao Zhang, Ziyan Tang, Ying Zhang, Lin Liu, Dan Zhao, Xigang Liu, Lin Guo, Jingao Dong","doi":"10.1080/15592324.2022.2098646","DOIUrl":"https://doi.org/10.1080/15592324.2022.2098646","url":null,"abstract":"<p><p>Root gravitropism is important for anchorage and exploration of soil for water and nutrients. It affects root architecture, which is one of the elements that influence crop yield. The mechanism of primary root gravitropism has been widely studied, but it is still not clear how lateral root gravitropism is regulated. Here, in this study, we found that Topoisomerase I α (TOP1α) repressed lateral root gravitropic growth, which was opposite to the previous report that TOP1α maintains primary root gravitropism, revealing a dual function of TOP1α in root gravitropism regulation. Further investigation showed that Target of Rapamycin (TOR) was suppressed in columella cells of lateral root to inhibit columella cell development, especially amyloplast biosynthesis. Our findings uncovered a new mechanism about lateral root gravitropism regulation, which might provide a theoretical support for improving agricultural production.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2098646"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40595989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanism of calcium signal response to cadmium stress in duckweed.","authors":"Qiuting Ren, Ziyi Xu, Ying Xue, Rui Yang, Xu Ma, Jinge Sun, Jing Wang, Shuang Lin, Wenqiao Wang, Lin Yang, Zhanpeng Sun","doi":"10.1080/15592324.2022.2119340","DOIUrl":"https://doi.org/10.1080/15592324.2022.2119340","url":null,"abstract":"<p><p>Cadmium (Cd) causes serious damage to plants. Although calcium (Ca) signal has been found to respond to certain stress, the localization of Ca and molecular mechanisms underlying Ca signal in plants during Cd stress are largely unknown. In this study, Ca<sup>2+</sup>-sensing fluorescent reporter (GCaMP3) transgenic duckweed showed the Ca<sup>2+</sup> signal response in <i>Lemna turionifera</i> 5511 (duckweed) during Cd stress. Subsequently, the subcellular localization of Ca<sup>2+</sup> has been studied during Cd stress by transmission electron microscopy, showing the accumulation of Ca<sup>2+</sup> in vacuoles. Also, Ca<sup>2+</sup> flow during Cd stress has been measured. At the same time, the effects of exogenous glutamic acid (Glu) and γ-aminobutyric (GABA) on duckweed can better clarify the signal operation mechanism of plants to Cd stress. The molecular mechanism of Ca<sup>2+</sup> signal responsed during Cd stress showed that Cd treatment promotes the positive response of Ca signaling channels in plant cells, and thus affects the intracellular Ca content. These novel signal studies provided an important Ca<sup>2+</sup> signal molecular mechanism during Cd stress.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2119340"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3f/d1/KPSB_17_2119340.PMC9481097.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40356523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Feng, Liying Zhou, Aiwu Sheng, Ling Lin, Huicheng Liu
{"title":"Comparative transcriptome analysis on drought stress-induced floral formation of <i>Curcuma kwangsiensis</i>.","authors":"Xin Feng, Liying Zhou, Aiwu Sheng, Ling Lin, Huicheng Liu","doi":"10.1080/15592324.2022.2114642","DOIUrl":"https://doi.org/10.1080/15592324.2022.2114642","url":null,"abstract":"<p><p>The rhizomes and tubers of <i>Curcuma kwangsiensis</i> have extensive medicinal value in China. However, the inflorescences of <i>C. kwangsiensis</i> are rarely known in horticulture, because of its low field flowering rate. In order to improve the flowering rate of <i>C. kwangsiensis</i>, we conducted drought stress treatment on the rhizome of <i>C. kwangsiensis</i>. The flowering rate of rhizome was the highest after 4d of drought stress treatment, and the buds on the rhizome could be obviously swell on the 4th day of rehydration culture. In order to identify the genes regulating the flowering time of <i>Curcuma kwangsiensis</i>, comparative transcriptome analysis was performed on the buds on rhizomes before drought stress treatment, 4 d after drought stress treatment and 4 d after rehydration culture. During this process, a total of 20 DEGs controlling flowering time and 23 DEGs involved in ABA synthesis and signal transduction were identified, which might regulate the flowering of <i>C. kwangsiensis</i> under drought stress. Some floral integration factors, such as <i>SOC1</i> and <i>FTIP</i>, were up-regulated under drought stress for 4 d, indicating that <i>C. kwangsiensis</i> had flowering trend under drought stress. The results of the present study will provide theoretical support for the application of <i>Curcuma kwangsiensis</i> in gardening.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":" ","pages":"2114642"},"PeriodicalIF":2.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542783/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40393210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}