{"title":"浮萍钙信号对镉胁迫的响应机制。","authors":"Qiuting Ren, Ziyi Xu, Ying Xue, Rui Yang, Xu Ma, Jinge Sun, Jing Wang, Shuang Lin, Wenqiao Wang, Lin Yang, Zhanpeng Sun","doi":"10.1080/15592324.2022.2119340","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd) causes serious damage to plants. Although calcium (Ca) signal has been found to respond to certain stress, the localization of Ca and molecular mechanisms underlying Ca signal in plants during Cd stress are largely unknown. In this study, Ca<sup>2+</sup>-sensing fluorescent reporter (GCaMP3) transgenic duckweed showed the Ca<sup>2+</sup> signal response in <i>Lemna turionifera</i> 5511 (duckweed) during Cd stress. Subsequently, the subcellular localization of Ca<sup>2+</sup> has been studied during Cd stress by transmission electron microscopy, showing the accumulation of Ca<sup>2+</sup> in vacuoles. Also, Ca<sup>2+</sup> flow during Cd stress has been measured. At the same time, the effects of exogenous glutamic acid (Glu) and γ-aminobutyric (GABA) on duckweed can better clarify the signal operation mechanism of plants to Cd stress. The molecular mechanism of Ca<sup>2+</sup> signal responsed during Cd stress showed that Cd treatment promotes the positive response of Ca signaling channels in plant cells, and thus affects the intracellular Ca content. These novel signal studies provided an important Ca<sup>2+</sup> signal molecular mechanism during Cd stress.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"2119340"},"PeriodicalIF":4.6000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3f/d1/KPSB_17_2119340.PMC9481097.pdf","citationCount":"3","resultStr":"{\"title\":\"Mechanism of calcium signal response to cadmium stress in duckweed.\",\"authors\":\"Qiuting Ren, Ziyi Xu, Ying Xue, Rui Yang, Xu Ma, Jinge Sun, Jing Wang, Shuang Lin, Wenqiao Wang, Lin Yang, Zhanpeng Sun\",\"doi\":\"10.1080/15592324.2022.2119340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cadmium (Cd) causes serious damage to plants. Although calcium (Ca) signal has been found to respond to certain stress, the localization of Ca and molecular mechanisms underlying Ca signal in plants during Cd stress are largely unknown. In this study, Ca<sup>2+</sup>-sensing fluorescent reporter (GCaMP3) transgenic duckweed showed the Ca<sup>2+</sup> signal response in <i>Lemna turionifera</i> 5511 (duckweed) during Cd stress. Subsequently, the subcellular localization of Ca<sup>2+</sup> has been studied during Cd stress by transmission electron microscopy, showing the accumulation of Ca<sup>2+</sup> in vacuoles. Also, Ca<sup>2+</sup> flow during Cd stress has been measured. At the same time, the effects of exogenous glutamic acid (Glu) and γ-aminobutyric (GABA) on duckweed can better clarify the signal operation mechanism of plants to Cd stress. The molecular mechanism of Ca<sup>2+</sup> signal responsed during Cd stress showed that Cd treatment promotes the positive response of Ca signaling channels in plant cells, and thus affects the intracellular Ca content. These novel signal studies provided an important Ca<sup>2+</sup> signal molecular mechanism during Cd stress.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"2119340\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3f/d1/KPSB_17_2119340.PMC9481097.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2022.2119340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2022.2119340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Mechanism of calcium signal response to cadmium stress in duckweed.
Cadmium (Cd) causes serious damage to plants. Although calcium (Ca) signal has been found to respond to certain stress, the localization of Ca and molecular mechanisms underlying Ca signal in plants during Cd stress are largely unknown. In this study, Ca2+-sensing fluorescent reporter (GCaMP3) transgenic duckweed showed the Ca2+ signal response in Lemna turionifera 5511 (duckweed) during Cd stress. Subsequently, the subcellular localization of Ca2+ has been studied during Cd stress by transmission electron microscopy, showing the accumulation of Ca2+ in vacuoles. Also, Ca2+ flow during Cd stress has been measured. At the same time, the effects of exogenous glutamic acid (Glu) and γ-aminobutyric (GABA) on duckweed can better clarify the signal operation mechanism of plants to Cd stress. The molecular mechanism of Ca2+ signal responsed during Cd stress showed that Cd treatment promotes the positive response of Ca signaling channels in plant cells, and thus affects the intracellular Ca content. These novel signal studies provided an important Ca2+ signal molecular mechanism during Cd stress.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.