{"title":"Identification of endophytic fungi with ACC deaminase-producing isolated from halophyte <i>Kosteletzkya Virginica</i>.","authors":"Xiaomin Wang, Zengyuan Tian, Yu Xi, Yuqi Guo","doi":"10.1080/15592324.2022.2152224","DOIUrl":null,"url":null,"abstract":"<p><p>Seashore mallow (<i>Kosteletzkya virginica</i>), as a noninvasive perennial halophytic oilseed-producing dicot, is native from the Gulf to the Atlantic coasts of the U.S. The purpose of our research was to investigate 1-aminocyclopropane-1carboxylic acid deaminase (ACCD) producing endophytic fungi from <i>K.virginica</i>. A total of 59 endophytic fungal strains, isolated from roots in <i>K.virginica</i> of seedlings, were grouped into 12 genera including in <i>Penicillium, Aspergillus, Fusarium, Trichoderma, Rhizopycnis</i> sp., <i>Ceriporia Donk, Trametes</i> sp., <i>Schizophyllum commune</i> sp., <i>Alternaria, Cladosporium, Cylindrocarpon</i>, and <i>Scytalidium</i> according to sequences of ITS. The ACD activity of 10 endophytic fungi isolated was detected. <i>T.asperellum</i> had the highest ACC deaminase activity among all 10 isolated <b>genera of</b> fungal strains, followed by <i>T. viride</i>. <b>Dry weight and fresh weight of plant</b>, plant height, root length, SOD activity, and chlorophyll content of wheat and soybean inoculated with <i>T.asperellum</i> <b>or</b> <i>T. viride</i> was increased compared with non-inoculated control plants under non salt or salt stress. Further analysis showed that <i>T.asperellum</i> or <i>T.viride</i> strains induced downregulation of the expression of ethylene synthesis-related genes such as ACC oxidase (ACO) and ACC synthase (ACS), thereby reducing ethylene synthesis and damage to plants under salt stress. These endophytic fungi can be used as alternative bioinoculants to increase crop yield in saline soil.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721417/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Signaling & Behavior","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2022.2152224","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Seashore mallow (Kosteletzkya virginica), as a noninvasive perennial halophytic oilseed-producing dicot, is native from the Gulf to the Atlantic coasts of the U.S. The purpose of our research was to investigate 1-aminocyclopropane-1carboxylic acid deaminase (ACCD) producing endophytic fungi from K.virginica. A total of 59 endophytic fungal strains, isolated from roots in K.virginica of seedlings, were grouped into 12 genera including in Penicillium, Aspergillus, Fusarium, Trichoderma, Rhizopycnis sp., Ceriporia Donk, Trametes sp., Schizophyllum commune sp., Alternaria, Cladosporium, Cylindrocarpon, and Scytalidium according to sequences of ITS. The ACD activity of 10 endophytic fungi isolated was detected. T.asperellum had the highest ACC deaminase activity among all 10 isolated genera of fungal strains, followed by T. viride. Dry weight and fresh weight of plant, plant height, root length, SOD activity, and chlorophyll content of wheat and soybean inoculated with T.asperellumorT. viride was increased compared with non-inoculated control plants under non salt or salt stress. Further analysis showed that T.asperellum or T.viride strains induced downregulation of the expression of ethylene synthesis-related genes such as ACC oxidase (ACO) and ACC synthase (ACS), thereby reducing ethylene synthesis and damage to plants under salt stress. These endophytic fungi can be used as alternative bioinoculants to increase crop yield in saline soil.
期刊介绍:
Plant Signaling & Behavior, a multidisciplinary peer-reviewed journal published monthly online, publishes original research articles and reviews covering the latest aspects of signal perception and transduction, integrative plant physiology, and information acquisition and processing.