{"title":"目标破坏:降解单线态氧损伤叶绿体。","authors":"Matthew D Lemke, Jesse D Woodson","doi":"10.1080/15592324.2022.2084955","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthesis is an essential process that plants must regulate to survive in dynamic environments. Thus, chloroplasts (the sites of photosynthesis in plant and algae cells) use multiple signaling mechanisms to report their health to the cell. Such signals are poorly understood but often involve reactive oxygen species (ROS) produced from the photosynthetic light reactions. One ROS, singlet oxygen (<sup>1</sup>O<sub>2</sub>), can signal to initiate chloroplast degradation, but the cellular machinery involved in identifying and degrading damaged chloroplasts (<i>i.e</i>., chloroplast quality control pathways) is unknown. To provide mechanistic insight into these pathways, two recent studies have investigated degrading chloroplasts in the <i>Arabidopsis thaliana</i><sup>1</sup>O<sub>2</sub> over-producing <i>plastid ferrochelatase two</i> (<i>fc2</i>) mutant. First, a structural analysis of degrading chloroplasts was performed with electron microscopy, which demonstrated that damaged chloroplasts can protrude into the central vacuole compartment with structures reminiscent of fission-type microautophagy. <sup>1</sup>O<sub>2</sub>-stressed chloroplasts swelled before these interactions, which may be a mechanism for their selective degradation. Second, the roles of autophagosomes and canonical autophagy (macroautophagy) were shown to be dispensable for <sup>1</sup>O<sub>2</sub>-initiated chloroplast degradation. Instead, putative fission-type microautophagy genes were induced by chloroplast <sup>1</sup>O<sub>2</sub>. Here, we discuss how these studies implicate this poorly understood cellular degradation pathway in the dismantling of <sup>1</sup>O<sub>2</sub>-damaged chloroplasts.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196835/pdf/","citationCount":"1","resultStr":"{\"title\":\"Targeted for destruction: degradation of singlet oxygen-damaged chloroplasts.\",\"authors\":\"Matthew D Lemke, Jesse D Woodson\",\"doi\":\"10.1080/15592324.2022.2084955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photosynthesis is an essential process that plants must regulate to survive in dynamic environments. Thus, chloroplasts (the sites of photosynthesis in plant and algae cells) use multiple signaling mechanisms to report their health to the cell. Such signals are poorly understood but often involve reactive oxygen species (ROS) produced from the photosynthetic light reactions. One ROS, singlet oxygen (<sup>1</sup>O<sub>2</sub>), can signal to initiate chloroplast degradation, but the cellular machinery involved in identifying and degrading damaged chloroplasts (<i>i.e</i>., chloroplast quality control pathways) is unknown. To provide mechanistic insight into these pathways, two recent studies have investigated degrading chloroplasts in the <i>Arabidopsis thaliana</i><sup>1</sup>O<sub>2</sub> over-producing <i>plastid ferrochelatase two</i> (<i>fc2</i>) mutant. First, a structural analysis of degrading chloroplasts was performed with electron microscopy, which demonstrated that damaged chloroplasts can protrude into the central vacuole compartment with structures reminiscent of fission-type microautophagy. <sup>1</sup>O<sub>2</sub>-stressed chloroplasts swelled before these interactions, which may be a mechanism for their selective degradation. Second, the roles of autophagosomes and canonical autophagy (macroautophagy) were shown to be dispensable for <sup>1</sup>O<sub>2</sub>-initiated chloroplast degradation. Instead, putative fission-type microautophagy genes were induced by chloroplast <sup>1</sup>O<sub>2</sub>. Here, we discuss how these studies implicate this poorly understood cellular degradation pathway in the dismantling of <sup>1</sup>O<sub>2</sub>-damaged chloroplasts.</p>\",\"PeriodicalId\":20232,\"journal\":{\"name\":\"Plant Signaling & Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196835/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Signaling & Behavior\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2022.2084955\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Signaling & Behavior","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2022.2084955","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeted for destruction: degradation of singlet oxygen-damaged chloroplasts.
Photosynthesis is an essential process that plants must regulate to survive in dynamic environments. Thus, chloroplasts (the sites of photosynthesis in plant and algae cells) use multiple signaling mechanisms to report their health to the cell. Such signals are poorly understood but often involve reactive oxygen species (ROS) produced from the photosynthetic light reactions. One ROS, singlet oxygen (1O2), can signal to initiate chloroplast degradation, but the cellular machinery involved in identifying and degrading damaged chloroplasts (i.e., chloroplast quality control pathways) is unknown. To provide mechanistic insight into these pathways, two recent studies have investigated degrading chloroplasts in the Arabidopsis thaliana1O2 over-producing plastid ferrochelatase two (fc2) mutant. First, a structural analysis of degrading chloroplasts was performed with electron microscopy, which demonstrated that damaged chloroplasts can protrude into the central vacuole compartment with structures reminiscent of fission-type microautophagy. 1O2-stressed chloroplasts swelled before these interactions, which may be a mechanism for their selective degradation. Second, the roles of autophagosomes and canonical autophagy (macroautophagy) were shown to be dispensable for 1O2-initiated chloroplast degradation. Instead, putative fission-type microautophagy genes were induced by chloroplast 1O2. Here, we discuss how these studies implicate this poorly understood cellular degradation pathway in the dismantling of 1O2-damaged chloroplasts.
期刊介绍:
Plant Signaling & Behavior, a multidisciplinary peer-reviewed journal published monthly online, publishes original research articles and reviews covering the latest aspects of signal perception and transduction, integrative plant physiology, and information acquisition and processing.