Plant Direct最新文献

筛选
英文 中文
Enhanced metabolic detoxification is associated with fluroxypyr resistance in Bassia scoparia. Bassia scoparia 的代谢解毒能力增强与氟吡甲禾灵抗性有关。
IF 2.3 3区 生物学
Plant Direct Pub Date : 2024-01-24 eCollection Date: 2024-01-01 DOI: 10.1002/pld3.560
Olivia E Todd, Eric L Patterson, Eric P Westra, Scott J Nissen, André Lucas Simões Araujo, William B Kramer, Franck E Dayan, Todd A Gaines
{"title":"Enhanced metabolic detoxification is associated with fluroxypyr resistance in <i>Bassia scoparia</i>.","authors":"Olivia E Todd, Eric L Patterson, Eric P Westra, Scott J Nissen, André Lucas Simões Araujo, William B Kramer, Franck E Dayan, Todd A Gaines","doi":"10.1002/pld3.560","DOIUrl":"10.1002/pld3.560","url":null,"abstract":"<p><p>Auxin-mimic herbicides chemically mimic the phytohormone indole-3-acetic-acid (IAA). Within the auxin-mimic herbicide class, the herbicide fluroxypyr has been extensively used to control kochia (<i>Bassia scoparia</i>). A 2014 field survey for herbicide resistance in kochia populations across Colorado identified a putative fluroxypyr-resistant (Flur-R) population that was assessed for response to fluroxypyr and dicamba (auxin-mimics), atrazine (photosystem II inhibitor), glyphosate (EPSPS inhibitor), and chlorsulfuron (acetolactate synthase inhibitor). This population was resistant to fluroxypyr and chlorsulfuron but sensitive to glyphosate, atrazine, and dicamba. Subsequent dose-response studies determined that Flur-R was 40 times more resistant to fluroxypyr than a susceptible population (J01-S) collected from the same field survey (LD<sub>50</sub> 720 and 20 g ae ha<sup>-1</sup>, respectively). Auxin-responsive gene expression increased following fluroxypyr treatment in Flur-R, J01-S, and in a dicamba-resistant, fluroxypyr-susceptible line 9,425 in an RNA-sequencing experiment. In Flur-R, several transcripts with molecular functions for conjugation and transport were constitutively higher expressed, such as glutathione S-transferases (GSTs), UDP-glucosyl transferase (GT), and ATP binding cassette transporters (ABC transporters). After analyzing metabolic profiles over time, both Flur-R and J01-S rapidly converted [<sup>14</sup>C]-fluroxypyr ester, the herbicide formulation applied to plants, to [<sup>14</sup>C]-fluroxypyr acid, the biologically active form of the herbicide, and three unknown metabolites. The formation and flux of these metabolites were faster in Flur-R than J01-S, reducing the concentration of phytotoxic fluroxypyr acid. One unique metabolite was present in Flur-R that was not present in the J01-S metabolic profile. Gene sequence variant analysis specifically for auxin receptor and signaling proteins revealed the absence of non-synonymous mutations affecting auxin signaling and binding in candidate auxin target site genes, further supporting our hypothesis that non-target site metabolic degradation is contributing to fluroxypyr resistance in Flur-R.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A phosphorylation-deficient ribosomal protein eS6 is largely functional in Arabidopsis thaliana, rescuing mutant defects from global translation and gene expression to photosynthesis and growth. 磷酸化缺陷核糖体蛋白 eS6 在拟南芥中基本上是功能性的,它能挽救突变体从全局翻译和基因表达到光合作用和生长的缺陷。
IF 2.3 3区 生物学
Plant Direct Pub Date : 2024-01-19 eCollection Date: 2024-01-01 DOI: 10.1002/pld3.566
Anwesha Dasgupta, Ricardo A Urquidi Camacho, Ramya Enganti, Sung Ki Cho, Lindsey L Tucker, John S Torreverde, Paul E Abraham, Albrecht G von Arnim
{"title":"A phosphorylation-deficient ribosomal protein eS6 is largely functional in <i>Arabidopsis thaliana</i>, rescuing mutant defects from global translation and gene expression to photosynthesis and growth.","authors":"Anwesha Dasgupta, Ricardo A Urquidi Camacho, Ramya Enganti, Sung Ki Cho, Lindsey L Tucker, John S Torreverde, Paul E Abraham, Albrecht G von Arnim","doi":"10.1002/pld3.566","DOIUrl":"10.1002/pld3.566","url":null,"abstract":"<p><p>The eukaryote-specific ribosomal protein of the small subunit eS6 is phosphorylated through the target of rapamycin (TOR) kinase pathway. Although this phosphorylation event responds dynamically to environmental conditions and has been studied for over 50 years, its biochemical and physiological significance remains controversial and poorly understood. Here, we report data from <i>Arabidopsis thaliana</i>, which indicate that plants expressing only a phospho-deficient isoform of eS6 grow essentially normally under laboratory conditions. The eS6z (<i>RPS6A</i>) paralog of eS6 functionally rescued a double mutant in both <i>rps6a</i> and <i>rps6b</i> genes when expressed at approximately twice the wild-type dosage. A mutant isoform of eS6z lacking the major six phosphorylatable serine and threonine residues in its carboxyl-terminal tail also rescued the lethality, rosette growth, and polyribosome loading of the double mutant. This isoform also complemented many mutant phenotypes of <i>rps6</i> that were newly characterized here, including photosynthetic efficiency, and most of the gene expression defects that were measured by transcriptomics and proteomics. However, compared with plants rescued with a phospho-enabled version of eS6z, the phospho-deficient seedlings retained a mild pointed-leaf phenotype, root growth was reduced, and certain cell cycle-related mRNAs and ribosome biogenesis proteins were misexpressed. The residual defects of the phospho-deficient seedlings could be understood as an incomplete rescue of the <i>rps6</i> mutant defects. There was little or no evidence for gain-of-function defects. As previously published, the phospho-deficient eS6z also rescued the <i>rps6a</i> and <i>rps6b</i> single mutants; however, phosphorylation of the eS6y (<i>RPS6B</i>) paralog remained lower than predicted, further underscoring that plants can tolerate phospho-deficiency of eS6 well. Our data also yield new insights into how plants cope with mutations in essential, duplicated ribosomal protein isoforms.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the function of the chloroplastic ribosome-associated GTPase high frequency of lysogenization X in Arabidopsis thaliana 拟南芥叶绿体核糖体相关 GTPase 高频溶酶原化 X 的功能透视
IF 3 3区 生物学
Plant Direct Pub Date : 2024-01-11 DOI: 10.1002/pld3.559
Marwa Mehrez, Cécile Lecampion, Hang Ke, Faten Gorsane, Ben Field
{"title":"Insights into the function of the chloroplastic ribosome-associated GTPase high frequency of lysogenization X in Arabidopsis thaliana","authors":"Marwa Mehrez, Cécile Lecampion, Hang Ke, Faten Gorsane, Ben Field","doi":"10.1002/pld3.559","DOIUrl":"https://doi.org/10.1002/pld3.559","url":null,"abstract":"Ribosome-associated GTPases are conserved enzymes that participate in ribosome biogenesis and ribosome function. In bacteria, recent studies have identified HflX as a ribosome-associated GTPase that is involved in both ribosome biogenesis and recycling under stress conditions. Plants possess a chloroplastic HflX homolog, but its function remains unknown. Here, we characterized the role of HflX in the plant <i>Arabidopsis thaliana</i>. Our findings show that HflX does not affect normal plant growth, nor does it play an essential role in acclimation to several different stresses, including heat, manganese, cold, and salt stress under the conditions tested. However, we found that HflX is required for plant resistance to chloroplast translational stress mediated by the antibiotic lincomycin. Our results suggest that HflX is a chloroplast ribosome-associated protein that may play a role in the surveillance of translation. These findings provide new insight into the function of HflX as a ribosome-associated GTPase in plants and highlight the importance of investigating conserved proteins in different organisms to gain a comprehensive understanding of their biological roles.","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139459342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microsporogenesis and the biosynthesis of floral small interfering RNAs in coffee have a unique pattern among eudicots, suggesting a sensitivity to climate changes 咖啡中的小孢子发生和花小干扰RNA的生物合成在裸子植物中具有独特的模式,表明其对气候变化的敏感性
IF 3 3区 生物学
Plant Direct Pub Date : 2024-01-07 DOI: 10.1002/pld3.561
Kellen Kauanne Pimenta de Oliveira, Raphael Ricon de Oliveira, Gabriel de Campos Rume, Thales Henrique Cherubino Ribeiro, Christiane Noronha Fernandes-Brum, Laurence Rodrigues do Amaral, Atul Kakrana, Sandra Mathioni, Blake C. Meyers, Matheus de Souza Gomes, Antonio Chalfun-Junior
{"title":"Microsporogenesis and the biosynthesis of floral small interfering RNAs in coffee have a unique pattern among eudicots, suggesting a sensitivity to climate changes","authors":"Kellen Kauanne Pimenta de Oliveira, Raphael Ricon de Oliveira, Gabriel de Campos Rume, Thales Henrique Cherubino Ribeiro, Christiane Noronha Fernandes-Brum, Laurence Rodrigues do Amaral, Atul Kakrana, Sandra Mathioni, Blake C. Meyers, Matheus de Souza Gomes, Antonio Chalfun-Junior","doi":"10.1002/pld3.561","DOIUrl":"https://doi.org/10.1002/pld3.561","url":null,"abstract":"Recently, the siRNAs pathways, and especially reproductive phasiRNAs, have attracted attention in eudicots since their biological roles are still unknown and their biogenesis took different evolutionary pathways compared to monocots. In this work, we used <i>Coffea arabica</i> L., a recent allotetraploid formed from the hybridization of <i>Coffea canephora</i> and <i>C. eugenioides</i> unreduced gametes, to explore microsporogenesis and small RNAs-related pathways in a eudicot crop. First, we identified the microsporogenesis stages during anther development revealing that pre-meiosis occurs in anthers of 1.5 mm inside floral buds (FBs), whereas meiosis between 1.5 and 4.2 mm FBs, and post-meiosis in FBs larger than 4.2 mm. These stages coincide with the Brazilian winter, a period of FBs reduced growth which suggests temperature sensitivity. Next, we identified and quantified the expression of reproductive 21- and 24-nt phasiRNAs during coffee anther development together with their canonical and novel miRNA triggers, and characterized the DCL and AGO families. Our results showed that the pattern of reproductive phasiRNA abundance in <i>C. arabica</i> is unique among described eudicots and the canonical trigger car-miR2275 is involved in the processing of both 21- and 24-nt phasiRNAs. Fourteen DCL genes were identified, but DCL5, related to phasiRNA biosynthesis in monocots, was not, according to its specificity for monocots. Thus, our work explored the knowledge gap about microsporogenesis and related siRNAs pathways in coffee, contributing to the control of reproductive development and the improvement of fertility in eudicots.","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139409047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creating saponin‐free yellow pea seeds by CRISPR/Cas9‐enabled mutagenesis on β‐amyrin synthase 通过对 β-amyrin 合成酶进行 CRISPR/Cas9 诱变,培育出不含皂素的黄豌豆种子
IF 3 3区 生物学
Plant Direct Pub Date : 2024-01-01 DOI: 10.1002/pld3.563
Connor L Hodgins, Eman M. Salama, Rahul Kumar, Yang Zhao, Susan A. Roth, Irene Z. Cheung, Jieyu Chen, Gene C. Arganosa, Tom Warkentin, Pankaj Bhowmik, Byung‐Kook Ham, Dae-Kyun Ro
{"title":"Creating saponin‐free yellow pea seeds by CRISPR/Cas9‐enabled mutagenesis on β‐amyrin synthase","authors":"Connor L Hodgins, Eman M. Salama, Rahul Kumar, Yang Zhao, Susan A. Roth, Irene Z. Cheung, Jieyu Chen, Gene C. Arganosa, Tom Warkentin, Pankaj Bhowmik, Byung‐Kook Ham, Dae-Kyun Ro","doi":"10.1002/pld3.563","DOIUrl":"https://doi.org/10.1002/pld3.563","url":null,"abstract":"Abstract Dry pea ( Pisum sativum ) seeds are valuable sources of plant protein, dietary fiber, and starch, but their uses in food products are restricted to some extent due to several off‐flavor compounds. Saponins are glycosylated triterpenoids and are a major source of bitter, astringent, and metallic off‐flavors in pea products. β‐amyrin synthase (BAS) is the entry point enzyme for saponin biosynthesis in pea and therefore is an ideal target for knock‐out using CRISPR/Cas9 genome editing to produce saponin deficient pea varieties. Here, in an elite yellow pea cultivar (CDC Inca), LC/MS analysis identified embryo tissue, not seed coat, as the main location of saponin storage in pea seeds. Differential expression analysis determined that PsBAS1 was preferentially expressed in embryo tissue relative to seed coat and was selected for CRISPR/Cas9 genome editing. The efficiency of CRISPR/Cas9 genome editing of PsBAS1 was systematically optimized in pea hairy roots. From these optimization procedures, the AtU6‐26 promoter was found to be superior to the CaMV35S promoter for gRNA expression, and the use of 37°C was determined to increase the efficiency of CRISPR/Cas9 genome editing. These promoter and culture conditions were then applied to stable transformations. As a result, a bi‐allelic mutation (deletion and inversion mutations) was generated in the PsBAS1 coding sequence in a T1 plant, and the segregated psbas1 plants from the T2 population showed a 99.8% reduction of saponins in their seeds. Interestingly, a small but statistically significant increase (~12%) in protein content with a slight decrease (~5%) in starch content was observed in the psbas1 mutants under phytotron growth conditions. This work demonstrated that flavor‐improved traits can be readily introduced in any pea cultivar of interest using CRISPR/Cas9. Further field trials and sensory tests for improved flavor are necessary to assess the practical implications of the saponin‐free pea seeds in food applications.","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139458435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics of turion development in two aquatic carnivorous plants: Hormonal profiles, gas exchange and mineral nutrient content 两种水生食肉植物的龟甲发育特征:激素谱、气体交换和矿物质营养含量
IF 3 3区 生物学
Plant Direct Pub Date : 2024-01-01 DOI: 10.1002/pld3.558
L. Adamec, L. Plačková, Karel Doležal
{"title":"Characteristics of turion development in two aquatic carnivorous plants: Hormonal profiles, gas exchange and mineral nutrient content","authors":"L. Adamec, L. Plačková, Karel Doležal","doi":"10.1002/pld3.558","DOIUrl":"https://doi.org/10.1002/pld3.558","url":null,"abstract":"Abstract Turions are vegetative, dormant, and storage overwintering organs formed in perennial aquatic plants in response to unfavorable ecological conditions and originate by extreme condensation of apical shoot segments. The contents of cytokinins, auxins, and abscisic acid were estimated in shoot apices of summer growing, rootless aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia australis, and in developing turions at three stages and full maturity to reveal hormonal patterns responsible for turion development. The hormones were analyzed in miniature turion samples using ultraperformance liquid chromatography coupled with triple quadrupole mass spectrometry. Photosynthetic measurements in young leaves also confirmed relatively high photosynthetic rates at later turion stages. The content of active cytokinin forms was almost stable in A. vesiculosa during turion development but markedly decreased in U. australis . In both species, auxin content culminated in the middle of turion development and then decreased again. The content of abscisic acid as the main inhibitory hormone was very low in growing plants in both species but rose greatly at first developmental stages and stayed very high in mature turions. The hormonal data indicate a great strength of developing turions within sink–source relationships and confirm the central role of abscisic acid in regulating the turion development.","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139458183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cadmium accumulation dynamics in the rice endosperm during grain filling revealed by autoradiography 自显影技术揭示谷粒灌浆过程中水稻胚乳中镉积累的动态变化
IF 3 3区 生物学
Plant Direct Pub Date : 2024-01-01 DOI: 10.1002/pld3.562
A. Hirose, K. Tanoi, T. Nakanishi, N. Kobayashi
{"title":"Cadmium accumulation dynamics in the rice endosperm during grain filling revealed by autoradiography","authors":"A. Hirose, K. Tanoi, T. Nakanishi, N. Kobayashi","doi":"10.1002/pld3.562","DOIUrl":"https://doi.org/10.1002/pld3.562","url":null,"abstract":"Abstract Cadmium (Cd) is one of the environmental pollutants contaminated in our food. Several previous reports showed that rice polishing cannot be efficient to reduce Cd content in white rice, implying the characteristic Cd distribution in rice grain. However, Cd distribution has not been fully elucidated so far. Herein, 109Cd radiotracer experiment was performed using the rice seedlings at various time points after flowering to obtain autoradiographs of the brown rice to visually understand the Cd transport and distribution during the grain‐filling process. It was shown that 109Cd accumulated in the outermost area of the brown rice, and also in the middle part of the starchy endosperm, resulting in the appearance of the double circle distribution pattern, which was not observed in the autoradiographs of 65Zn. The inner circle of 109Cd located around the center of the endosperm was developed particularly at around 8 and 10 days after flowering. After this period, 109Cd started to deposit at the outer part of the endosperm, which was also found in the autoradiograph of 14C‐sucrose. Considering the physiology of grain development, the contribution of water transport and protein synthesis in the endosperm on the characteristic Cd distribution pattern was hypothesized.","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139457618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STOP1-regulated SMALL AUXIN UP RNA55 (SAUR55) is involved in proton/malate co-secretion for Al tolerance in Arabidopsis STOP1 调控的小辅酶 RNA55(SAUR55)参与质子/苹果酸共同分泌,促进拟南芥对铝的耐受性
IF 3 3区 生物学
Plant Direct Pub Date : 2023-12-29 DOI: 10.1002/pld3.557
Raj Kishan Agrahari, Yuriko Kobayashi, Takuo Enomoto, Tasuku Miyachi, Marie Sakuma, Miki Fujita, Takuya Ogata, Yasunari Fujita, Satoshi Iuchi, Masatomo Kobayashi, Yoshiharu Y. Yamamoto, Hiroyuki Koyama
{"title":"STOP1-regulated SMALL AUXIN UP RNA55 (SAUR55) is involved in proton/malate co-secretion for Al tolerance in Arabidopsis","authors":"Raj Kishan Agrahari, Yuriko Kobayashi, Takuo Enomoto, Tasuku Miyachi, Marie Sakuma, Miki Fujita, Takuya Ogata, Yasunari Fujita, Satoshi Iuchi, Masatomo Kobayashi, Yoshiharu Y. Yamamoto, Hiroyuki Koyama","doi":"10.1002/pld3.557","DOIUrl":"https://doi.org/10.1002/pld3.557","url":null,"abstract":"Proton (H<sup>+</sup>) release is linked to aluminum (Al)-enhanced organic acids (OAs) excretion from the roots under Al rhizotoxicity in plants. It is well-reported that the Al-enhanced organic acid excretion mechanism is regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1), a zinc-finger TF that regulates major Al tolerance genes. However, the mechanism of H<sup>+</sup> release linked to OAs excretion under Al stress has not been fully elucidated. Recent physiological and molecular-genetic studies have implicated the involvement of SMALL AUXIN UP RNAs (SAURs) in the activation of plasma membrane H<sup>+</sup>-ATPases for stress responses in plants. We hypothesized that STOP1 is involved in the regulation of Al-responsive <i>SAURs</i>, which may contribute to the co-secretion of protons and malate under Al stress conditions. In our transcriptome analysis of the roots of the <i>stop1</i> (sensitive to proton rhizotoxicity1) mutant, we found that STOP1 regulates the transcription of one of the <i>SAURs</i>, namely <i>SAUR55</i>. Furthermore, we observed that the expression of <i>SAUR55</i> was induced by Al and repressed in the STOP1 T-DNA insertion knockout (KO) mutant (<i>STOP1</i>-KO). Through in silico analysis, we identified a functional STOP1-binding site in the promoter of <i>SAUR55</i>. Subsequent in vitro and in vivo studies confirmed that STOP1 directly binds to the promoter of <i>SAUR55</i>. This suggests that STOP1 directly regulates the expression of <i>SAUR55</i> under Al stress. We next examined proton release in the rhizosphere and malate excretion in the T-DNA insertion KO mutant of SAUR55 (<i>saur55</i>), in conjunction with <i>STOP1</i>-KO. Both <i>saur55</i> and <i>STOP1</i>-KO suppressed rhizosphere acidification and malate release under Al stress. Additionally, the root growth of <i>saur55</i> was sensitive to Al-containing media. In contrast, the overexpressed line of <i>SAUR55</i> enhanced rhizosphere acidification and malate release, leading to increased Al tolerance. These associations with Al tolerance were also observed in natural variations of Arabidopsis. These findings demonstrate that transcriptional regulation of <i>SAUR55</i> by STOP1 positively regulates H<sup>+</sup> excretion via PM H<sup>+</sup>-ATPase 2 which enhances Al tolerance by malate secretion from the roots of Arabidopsis. The activation of PM H<sup>+</sup>-ATPase 2 by SAUR55 was suggested to be due to PP2C.D2/D5 inhibition by interaction on the plasma membrane with its phosphatase. Furthermore, RNAi-suppression of <i>NtSTOP1</i> in tobacco shows suppression of rhizosphere acidification under Al stress, which was associated with the suppression of <i>SAUR55</i> orthologs, which are inducible by Al in tobacco. It suggests that transcriptional regulation of Al-inducible <i>SAUR</i>s by STOP1 plays a critical role in OAs excretion in several plant species as an Al tolerance mechanism.","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PELOTA and HBS1 suppress co-translational messenger RNA decay in Arabidopsis. PELOTA 和 HBS1 可抑制拟南芥中信使 RNA 的共翻译衰变。
IF 3 3区 生物学
Plant Direct Pub Date : 2023-12-26 eCollection Date: 2023-12-01 DOI: 10.1002/pld3.553
Rong Guo, Brian D Gregory
{"title":"PELOTA and HBS1 suppress co-translational messenger RNA decay in Arabidopsis.","authors":"Rong Guo, Brian D Gregory","doi":"10.1002/pld3.553","DOIUrl":"10.1002/pld3.553","url":null,"abstract":"<p><p>Various messenger RNA (mRNA) decay mechanisms play major roles in controlling mRNA quality and quantity in eukaryotic organisms under different conditions. While it is known that the recently discovered co-translational mRNA decay (CTRD), the mechanism that allows mRNAs to be degraded while still being actively translated, is prevalent in yeast, humans, and various angiosperms, the regulation of this decay mechanism is less well studied. Moreover, it is still unclear whether this decay mechanism plays any role in the regulation of specific physiological processes in eukaryotes. Here, by re-analyzing the publicly available polysome profiling or ribosome footprinting and degradome sequencing datasets, we discovered that highly translated mRNAs tend to have lower co-translational decay levels. Based on this finding, we then identified Pelota and Hbs1, the translation-related ribosome rescue factors, as suppressors of co-translational mRNA decay in Arabidopsis. Furthermore, we found that Pelota and Hbs1 null mutants have lower germination rates compared to the wild-type plants, implying that proper regulation of co-translational mRNA decay is essential for normal developmental processes. In total, our study provides further insights into the regulation of CTRD in Arabidopsis and demonstrates that this decay mechanism does play important roles in Arabidopsis physiological processes.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential expansion and retention patterns of LRR-RLK genes across plant evolution. LRR-RLK 基因在植物进化过程中的扩展和保留模式差异。
IF 2.3 3区 生物学
Plant Direct Pub Date : 2023-12-21 eCollection Date: 2023-12-01 DOI: 10.1002/pld3.556
Zachary Kileeg, Aparna Haldar, Hasna Khan, Arooj Qamar, G Adam Mott
{"title":"Differential expansion and retention patterns of LRR-RLK genes across plant evolution.","authors":"Zachary Kileeg, Aparna Haldar, Hasna Khan, Arooj Qamar, G Adam Mott","doi":"10.1002/pld3.556","DOIUrl":"10.1002/pld3.556","url":null,"abstract":"<p><p>To maximize overall fitness, plants must accurately respond to a host of growth, developmental, and environmental signals throughout their life. Many of these internal and external signals are perceived by the leucine-rich repeat receptor-like kinases, which play roles in regulating growth, development, and immunity. This largest family of receptor kinases in plants can be divided into subfamilies based on the conservation of the kinase domain, which demonstrates that shared evolutionary history often indicates shared molecular function. Here we investigate the evolutionary history of this family across the evolution of 112 plant species. We identify lineage-specific expansions of the malectin-domain containing subfamily LRR subfamily I primarily in the Brassicales and bryophytes. Most other plant lineages instead show a large expansion in LRR subfamily XII, which in Arabidopsis is known to contain key receptors in pathogen perception. This striking asymmetric expansion may reveal a dichotomy in the evolutionary history and adaptation strategies employed by plants. A greater understanding of the evolutionary pressures and adaptation strategies acting on members of this receptor family offers a way to improve functional predictions for orphan receptors and simplify the identification of novel stress-related receptors.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信