Critical parameters for robust Agrobacterium-mediated transient transformation and quantitative promoter assays in Catharanthus roseus seedlings.

IF 2.3 3区 生物学 Q2 PLANT SCIENCES
Plant Direct Pub Date : 2024-06-05 eCollection Date: 2024-06-01 DOI:10.1002/pld3.596
Lauren F Cole-Osborn, Emma Meehan, Carolyn W T Lee-Parsons
{"title":"Critical parameters for robust <i>Agrobacterium</i>-mediated transient transformation and quantitative promoter assays in <i>Catharanthus roseus</i> seedlings.","authors":"Lauren F Cole-Osborn, Emma Meehan, Carolyn W T Lee-Parsons","doi":"10.1002/pld3.596","DOIUrl":null,"url":null,"abstract":"<p><p><i>Agrobacterium</i>-mediated transient expression methods are widely used to study gene function in both model and non-model plants. Using a dual-luciferase assay, we quantified the effect of <i>Agrobacterium</i>-infiltration parameters on the transient transformation efficiency of <i>Catharanthus roseus</i> seedlings. We showed that transformation efficiency is highly sensitive to seedling developmental state and a pre- and post-infiltration dark incubation and is less sensitive to the <i>Agrobacterium</i> growth stage. For example, 5 versus 6 days of germination in the dark increased seedling transformation efficiency by seven- to eight-fold while a dark incubation pre- and post-infiltration increased transformation efficiency by five- to 13-fold. <i>Agrobacterium</i> in exponential compared with stationary phase increased transformation efficiency by two-fold. Finally, we quantified the variation in our <i>Agrobacterium</i>-infiltration method in replicate infiltrations and experiments. Within a given experiment, significant differences of up to 2.6-fold in raw firefly luciferase (<i>FLUC</i>) and raw <i>Renilla</i> luciferase (<i>RLUC</i>) luminescence occurred in replicate infiltrations. These differences were significantly reduced when FLUC was normalized to RLUC values, highlighting the utility of including a reference reporter to minimize false positives. Including a second experimental replicate further reduced the potential for false positives. This optimization and quantitative validation of <i>Agrobacterium</i> infiltration in <i>C. roseus</i> seedlings will facilitate the study of this important medicinal plant and will expand the application of <i>Agrobacterium</i>-mediated transformation methods in other plant species.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154794/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.596","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Agrobacterium-mediated transient expression methods are widely used to study gene function in both model and non-model plants. Using a dual-luciferase assay, we quantified the effect of Agrobacterium-infiltration parameters on the transient transformation efficiency of Catharanthus roseus seedlings. We showed that transformation efficiency is highly sensitive to seedling developmental state and a pre- and post-infiltration dark incubation and is less sensitive to the Agrobacterium growth stage. For example, 5 versus 6 days of germination in the dark increased seedling transformation efficiency by seven- to eight-fold while a dark incubation pre- and post-infiltration increased transformation efficiency by five- to 13-fold. Agrobacterium in exponential compared with stationary phase increased transformation efficiency by two-fold. Finally, we quantified the variation in our Agrobacterium-infiltration method in replicate infiltrations and experiments. Within a given experiment, significant differences of up to 2.6-fold in raw firefly luciferase (FLUC) and raw Renilla luciferase (RLUC) luminescence occurred in replicate infiltrations. These differences were significantly reduced when FLUC was normalized to RLUC values, highlighting the utility of including a reference reporter to minimize false positives. Including a second experimental replicate further reduced the potential for false positives. This optimization and quantitative validation of Agrobacterium infiltration in C. roseus seedlings will facilitate the study of this important medicinal plant and will expand the application of Agrobacterium-mediated transformation methods in other plant species.

农杆菌介导的瞬时转化和定量启动子检测的关键参数。
农杆菌介导的瞬时表达方法被广泛用于研究模式植物和非模式植物的基因功能。我们利用双荧光素酶检测法,量化了农杆菌浸润参数对蔷薇幼苗瞬时转化效率的影响。我们的研究表明,转化效率对幼苗的发育状态以及浸润前后的黑暗培养高度敏感,而对农杆菌的生长阶段则不太敏感。例如,在黑暗中发芽 5 天与 6 天可使幼苗的转化效率提高 7 到 8 倍,而过滤前后的黑暗培养可使转化效率提高 5 到 13 倍。处于指数期的农杆菌与处于静止期的农杆菌相比,转化效率提高了两倍。最后,我们对重复浸润和实验中农杆菌浸润方法的变化进行了量化。在给定的实验中,重复浸润中原始萤火虫荧光素酶(FLUC)和原始雷尼拉荧光素酶(RLUC)发光的显著差异高达 2.6 倍。将 FLUC 归一化为 RLUC 值后,这些差异明显缩小,这说明加入参考报告物可以最大程度地减少假阳性。包括第二个实验重复进一步降低了假阳性的可能性。农杆菌在蔷薇幼苗中浸润的优化和定量验证将促进对这种重要药用植物的研究,并将扩大农杆菌介导的转化方法在其他植物物种中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信