Plant Direct最新文献

筛选
英文 中文
Deciphering chemical diversity among five variants of Abeliophyllum distichum flowers through metabolomics analysis. 通过代谢组学分析解密 Abeliophyllum distichum 花的五个变体之间的化学多样性。
IF 2.3 3区 生物学
Plant Direct Pub Date : 2024-09-19 eCollection Date: 2024-09-01 DOI: 10.1002/pld3.616
Yeong-Geun Lee, Jeong Eun Kwon, Won-Sil Choi, Nam-In Baek, Se Chan Kang
{"title":"Deciphering chemical diversity among five variants of <i>Abeliophyllum distichum</i> flowers through metabolomics analysis.","authors":"Yeong-Geun Lee, Jeong Eun Kwon, Won-Sil Choi, Nam-In Baek, Se Chan Kang","doi":"10.1002/pld3.616","DOIUrl":"https://doi.org/10.1002/pld3.616","url":null,"abstract":"<p><p><i>Abeliophyllum distichum</i> (Oleaceae), endemic to the Korean Peninsula and the sole member of its genus and species, possesses high scarcity value, escalating its importance under the Nagoya Protocol. Despite its significance, their metabolites and activities of <i>A. distichum</i> flowers remain unexplored. This study employs an integrated metabolomic approach utilizing NMR, LC/MS, GC/MS, and FTIR techniques to comprehensively analyze the metabolite profile of <i>A. distichum</i> flowers. By combining these methods, we identified 35 metabolites, 43 secondary metabolites, and 108 hydrophobic primary metabolites. Notably, distinct concentration patterns of these compounds were observed across five variants, classified based on morphological characteristics. Correlation analyses of primary and secondary metabolites unveiled varietal metabolic flux, providing insights into <i>A. distichum</i> flower metabolism. Additionally, the reconstruction of metabolic pathways based on dissimilarities in morphological traits elucidates variant-specific metabolic signatures. These findings not only enhance our understanding of chemical differences between varieties but also underscore the importance of considering varietal differences in future research and conservation efforts.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411454/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunolocalization of hordein synthesis and transport in developing barley endosperm. 发育中的大麦胚乳中角蛋白合成和运输的免疫定位。
IF 2.3 3区 生物学
Plant Direct Pub Date : 2024-09-05 eCollection Date: 2024-09-01 DOI: 10.1002/pld3.591
Gregory Tanner, Allison van de Meene, Anthony Bacic
{"title":"Immunolocalization of hordein synthesis and transport in developing barley endosperm.","authors":"Gregory Tanner, Allison van de Meene, Anthony Bacic","doi":"10.1002/pld3.591","DOIUrl":"10.1002/pld3.591","url":null,"abstract":"<p><p>The spatial accumulation of hordeins in the developing endosperm of barley grains was examined by immunofluorescence microscopy (immunolight microscopy [iLM]) and immunoelectron microscopy (iEM) to establish the timing and subcellular pattern of hordein synthesis and deposition. The pattern seen for hordeins was compared to other abundant grain proteins, such as serpin Z4 and lipid transfer protein 1 (LTP1). Hordein accumulates throughout grain development, from 6 to 37 days post-anthesis (DPA). In contrast, serpin Z4 was present at 6 DPA, but the greatest synthesis and accumulation occurred during the middle of seed development, from 15 to 30 DPA. LTP1 accumulated later in seed development, from 15 to 30 DPA. Hordeins accumulated within the lumen of the endoplasmic reticulum (ER), were exocytosed from the ER membrane, and accumulated in protein bodies, which then fused either with the protein storage vacuoles or with other protein bodies, which also later fused with the protein storage vacuoles. iEM showed hordein, and LTP1 appeared not to traverse the Golgi apparatus (GA). Hordein, LTP1, and serpin Z4 colocalized to the same protein bodies and were co-transported to the protein storage vacuole in the same protein bodies. It is likely that this represents a general transport mechanism common to storage proteins in developing grains.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of light regimes on circadian gene co‐expression networks in Arabidopsis thaliana 光照制度对拟南芥昼夜节律基因共表达网络的影响
IF 3 3区 生物学
Plant Direct Pub Date : 2024-08-27 DOI: 10.1002/pld3.70001
Quentin Rivière, Virginie Raskin, Romário de Melo, Stéphanie Boutet, Massimiliano Corso, Matthieu Defrance, Alex A. R. Webb, Nathalie Verbruggen, Armand D. Anoman
{"title":"Effects of light regimes on circadian gene co‐expression networks in Arabidopsis thaliana","authors":"Quentin Rivière, Virginie Raskin, Romário de Melo, Stéphanie Boutet, Massimiliano Corso, Matthieu Defrance, Alex A. R. Webb, Nathalie Verbruggen, Armand D. Anoman","doi":"10.1002/pld3.70001","DOIUrl":"https://doi.org/10.1002/pld3.70001","url":null,"abstract":"Light/dark (LD) cycles are responsible for oscillations in gene expression, which modulate several aspects of plant physiology. Those oscillations can persist under constant conditions due to regulation by the circadian oscillator. The response of the transcriptome to light regimes is dynamic and allows plants to adapt rapidly to changing environmental conditions. We compared the transcriptome of Arabidopsis under LD and constant light (LL) for 3 days and identified different gene co‐expression networks in the two light regimes. Our studies yielded unforeseen insights into circadian regulation. Intuitively, we anticipated that gene clusters regulated by the circadian oscillator would display oscillations under LD cycles. However, we found transcripts encoding components of the flavonoid metabolism pathway that were rhythmic in LL but not in LD. We also discovered that the expressions of many stress‐related genes were significantly increased during the dark period in LD relative to the subjective night in LL, whereas the expression of these genes in the light period was similar. The nocturnal pattern of these stress‐related gene expressions suggested a form of “skotoprotection.” The transcriptomics data were made available in a web application named <jats:italic>Cyclath</jats:italic>, which we believe will be a useful tool to contribute to a better understanding of the impact of light regimes on plants.","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of a mammalian RNA demethylase increases flower number and floral stem branching in Arabidopsis thaliana 表达哺乳动物 RNA 去甲基化酶可增加拟南芥的花朵数量和花茎分枝
IF 3 3区 生物学
Plant Direct Pub Date : 2024-08-22 DOI: 10.1002/pld3.70000
Kasey Markel, Lucas Waldburger, Patrick M. Shih
{"title":"Expression of a mammalian RNA demethylase increases flower number and floral stem branching in Arabidopsis thaliana","authors":"Kasey Markel, Lucas Waldburger, Patrick M. Shih","doi":"10.1002/pld3.70000","DOIUrl":"https://doi.org/10.1002/pld3.70000","url":null,"abstract":"RNA methylation plays a central regulatory role in plant biology and is a relatively new target for plant improvement efforts. In nearly all cases, perturbation of the RNA methylation machinery results in deleterious phenotypes. However, a recent landmark paper reported that transcriptome‐wide use of the human RNA demethylase FTO substantially increased the yield of rice and potatoes. Here, we have performed the first independent replication of those results and demonstrated broader transferability of the trait, finding increased flower and fruit count in the model species <jats:styled-content style=\"fixed-case\"><jats:italic>Arabidopsis thaliana</jats:italic></jats:styled-content>. We also performed RNA‐seq of our FTO‐transgenic plants, which we analyzed in conjunction with previously published datasets to detect several previously unrecognized patterns in the functional and structural classification of the upregulated and downregulated genes. From these, we present mechanistic hypotheses to explain these surprising results with the goal of spurring more widespread interest in this promising new approach to plant engineering.","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The male germ unit association is independently regulated of GUM in Arabidopsis thaliana. 拟南芥雄性生殖单位联合体受 GUM 的独立调控。
IF 2.3 3区 生物学
Plant Direct Pub Date : 2024-07-29 eCollection Date: 2024-07-01 DOI: 10.1002/pld3.624
Abdur Rauf, Anbang Wang, Yujia Li, Zhihao Lian, Shouxing Wei, Kashmala Jabbar, Muhammad Wisal, Ikramullah Khan, Muhammad Khalid, Jingyang Li
{"title":"The male germ unit association is independently regulated of GUM in <i>Arabidopsis thaliana</i>.","authors":"Abdur Rauf, Anbang Wang, Yujia Li, Zhihao Lian, Shouxing Wei, Kashmala Jabbar, Muhammad Wisal, Ikramullah Khan, Muhammad Khalid, Jingyang Li","doi":"10.1002/pld3.624","DOIUrl":"10.1002/pld3.624","url":null,"abstract":"<p><p>Cytoplasmic projections (CPs) formed by the generative and sperm cells link the male gametes with the vegetative cell (VC) nucleus, which are required to build the male germ unit (MGU) assemblage in the angiosperm pollen grain. As molecular and genetic controls underlying CP development and formation of the MGU are unknown, it was hypothesized that physical association between germ cells and the VC nucleus might be lost in <i>germ unit malformed</i> (<i>gum</i>) mutants or in those which either block generative cell (GC) division or that additionally prevent gamete differentiation. In vivo, analysis of marked cellular components demonstrated a linkage of sperm cells (SCs) and the VC nucleus in <i>gum</i> mutant alleles despite their increased physical separation. Similarly, for several independent classes of bicellular pollen mutants, undivided GCs were associated with the VC nucleus like GCs in wild-type pollen. We conclude that the early formation of GC CPs to establish the MGU is regulated independently of DUO1-DAZ1 and DUO3 transcription factors as well as cyclin-dependent kinase function (CDKA;1). As the absence of cytoplasmic protrusion was expected in the <i>gum</i> mutants in Arabidopsis, early histological studies reported temporal disappearance of cytoplasmic protrusion in several organisms. Our findings demonstrated the striking importance of live imaging to verify the broad conservation of the persistent MGU contact in all the angiosperms and its important role in successful double fertilization.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286290/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating a role for PUB17 and PUB16 in the self-incompatibility signaling pathway in transgenic Arabidopsis thaliana. 研究 PUB17 和 PUB16 在转基因拟南芥自相容信号通路中的作用
IF 2.3 3区 生物学
Plant Direct Pub Date : 2024-07-23 eCollection Date: 2024-07-01 DOI: 10.1002/pld3.622
Paula K S Beronilla, Daphne R Goring
{"title":"Investigating a role for PUB17 and PUB16 in the self-incompatibility signaling pathway in transgenic <i>Arabidopsis thaliana</i>.","authors":"Paula K S Beronilla, Daphne R Goring","doi":"10.1002/pld3.622","DOIUrl":"10.1002/pld3.622","url":null,"abstract":"<p><p>In Brassicaceae self-incompatibility (SI), self-pollen rejection is initiated by the <i>S-</i>haplotype specific interactions between the pollen S cysteine-rich/S-locus protein 11 (SCR/SP11) ligands and the stigma S receptor kinases (SRK). In <i>Brassica</i> SI, a member of the Plant U-Box (PUB) E3 ubiquitin ligases, ARM-repeat containing 1 (ARC1), is then activated by SRK in this stigma and cellular events downstream of this cause SI pollen rejection by inhibiting pollen hydration and pollen tube growth. During the transition to selfing, <i>Arabidopsis thaliana</i> lost the SI components, <i>SCR</i>, <i>SRK</i>, and <i>ARC1</i>. However, this trait can be reintroduced into <i>A. thaliana</i> by adding back functional copies of these genes from closely related SI species. Both SCR and SRK are required for this, though the degree of SI pollen rejection varies between <i>A. thaliana</i> accessions, and ARC1 is not always needed to produce a strong SI response. For the <i>A. thaliana</i> C24 accession, only transforming with <i>Arabidopsis lyrata</i> <i>SCR</i> and <i>SRK</i> confers a strong SI trait (SI-C24), and so here, we investigated if ARC1-related PUBs were involved in the SI pathway in the transgenic <i>A. thaliana</i> SI-C24 line. Two close ARC1 homologs, PUB17 and PUB16, were selected, and (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology was used to generate <i>pub17</i> and <i>pub16</i> mutations in the C24 accession. These mutants were then crossed into the transgenic <i>A. thaliana</i> SI-C24 line and their potential impact on SI pollen rejection was investigated. Overall, we did not observe any significant differences in SI responses to implicate PUB17 and PUB16 functioning in the transgenic <i>A. thaliana</i> SI-C24 stigma to reject SI pollen.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying aluminum toxicity effects on corn phenotype using advanced imaging technologies. 利用先进的成像技术量化铝毒性对玉米表型的影响。
IF 2.3 3区 生物学
Plant Direct Pub Date : 2024-07-22 eCollection Date: 2024-07-01 DOI: 10.1002/pld3.623
Lóránt Szőke, Brigitta Tóth, Tomislav Javornik, Boris Lazarević
{"title":"Quantifying aluminum toxicity effects on corn phenotype using advanced imaging technologies.","authors":"Lóránt Szőke, Brigitta Tóth, Tomislav Javornik, Boris Lazarević","doi":"10.1002/pld3.623","DOIUrl":"10.1002/pld3.623","url":null,"abstract":"<p><p>Soil acidity (pH <5.5) limits agricultural production due to aluminum (Al) toxicity. The primary target of Al toxicity is the plant root. However, symptoms can be observed on the shoots. This study aims to determine the potential use of chlorophyll fluorescence imaging, multispectral imaging, and 3D multispectral scanning technology to quantify the effects of Al toxicity on corn. Corn seedlings were grown for 13 days in nutrient solutions (pH 4.0) with four Al treatments: 50, 100, 200, and 400 μM and a control (0 μM AlCl<sub>3</sub> L<sup>-1</sup>). During the experiment, four measurements were performed: four (MT1), six (MT2), 11 (MT3), and 13 (MT4) days after the application of Al treatments. The most sensitive traits affected by Al toxicity were the reduction of plant growth and increased reflectance in the visible wavelength (affected at MT1). The reflectance of red wavelengths increased more significantly compared to near-infrared and green wavelengths, leading to a decrease in the normalized difference vegetation index and the Green Leaf Index. The most sensitive chlorophyll fluorescence traits, effective quantum yield of PSII, and photochemical quenching coefficient were affected after prolonged Al exposure (MT3). This study demonstrates the usability of selected phenotypic traits in remote sensing studies to map Al-toxic soils and in high-throughput phenotyping studies to screen Al-tolerant genotypes.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of constitutive root isoprene emission on root phenotype and physiology under control and salt stress conditions. 在控制和盐胁迫条件下,组成型根系异戊二烯排放对根系表型和生理的影响。
IF 2.3 3区 生物学
Plant Direct Pub Date : 2024-07-06 eCollection Date: 2024-07-01 DOI: 10.1002/pld3.617
Manuel Bellucci, Mohammad Golam Mostofa, Sarathi M Weraduwage, Yuan Xu, Mostafa Abdelrahman, Laura De Gara, Francesco Loreto, Thomas D Sharkey
{"title":"The effect of constitutive root isoprene emission on root phenotype and physiology under control and salt stress conditions.","authors":"Manuel Bellucci, Mohammad Golam Mostofa, Sarathi M Weraduwage, Yuan Xu, Mostafa Abdelrahman, Laura De Gara, Francesco Loreto, Thomas D Sharkey","doi":"10.1002/pld3.617","DOIUrl":"10.1002/pld3.617","url":null,"abstract":"<p><p>Isoprene, a volatile hydrocarbon, is typically emitted from the leaves of many plant species. Given its well-known function in plant growth and defense aboveground, we examined its effects on root physiology. We used isoprene-emitting (IE) lines and a non-emitting (NE) line of Arabidopsis and investigated their performance by analyzing root phenotype, hormone levels, transcriptome, and metabolite profiles under both normal and salt stress conditions. We show that IE lines emitted tiny amounts of isoprene from roots and showed an increased root/shoot ratio compared with NE line. Isoprene emission exerted a noteworthy influence on hormone profiles related to plant growth and stress response, promoting root development and salt-stress resistance. Methyl erythritol 4-phosphate pathway metabolites, precursors of isoprene and hormones, were higher in the roots of IE lines than in the NE line. Transcriptome data indicated that the presence of isoprene increased the expression of key genes involved in hormone metabolism/signaling. Our findings reveal that constitutive root isoprene emission sustains root growth under saline conditions by regulating and/or priming hormone biosynthesis and signaling mechanisms and expression of key genes relevant to salt stress defense.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of CsBRC, an F-box gene from Camellia sinensis, increased the plant branching in tobacco and rice. 过量表达来自山茶的 F-box 基因 CsBRC 增加了烟草和水稻的植株分枝。
IF 2.3 3区 生物学
Plant Direct Pub Date : 2024-07-03 eCollection Date: 2024-07-01 DOI: 10.1002/pld3.618
Bokun Zhou, Qi Sheng, Xinzhuan Yao, Tong Li, Litang Lu
{"title":"Overexpression of <i>CsBRC</i>, an F-box gene from <i>Camellia sinensis</i>, increased the plant branching in tobacco and rice.","authors":"Bokun Zhou, Qi Sheng, Xinzhuan Yao, Tong Li, Litang Lu","doi":"10.1002/pld3.618","DOIUrl":"10.1002/pld3.618","url":null,"abstract":"<p><p>Tea plant (<i>Camellia sinensis</i> [<i>L</i>.]) is one of the most important crops in China, and tea branch is an important agronomic trait that determines the yield of tea plant. In previous work focused on GWAS that detecting GWAS signals related to plant architecture through whole genome re-sequencing of ancient tea plants, a gene locus TEA 029928 significantly related to plant type was found. Sequence alignment results showed that this gene belonged to the F-box family. We named it <i>CsBRC</i>. CsBRC-GFP fusion proteins were mainly localized in the plasma membrane. By comparing the phenotypes of <i>CsBRC</i> transgenic tobacco and WT tobacco, it was found that the number of branches of transgenic tobacco was significantly higher than that of wild-type tobacco. Through RNA-seq analysis, it was found that <i>CsBRC</i> affects the branching development of plants by regulating the expression of genes related to brassinosteroid synthesis pathway in plants. In addition, overexpression of <i>CsBRC</i> in rice could increase tiller number, grain length and width, and 1,000-grain weight.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the diversity of galls on Artemisia indica induced by Rhopalomyia species through morphological and transcriptome analyses. 通过形态学和转录组分析探索 Rhopalomyia 物种诱发的茵陈蒿虫瘿的多样性。
IF 2.3 3区 生物学
Plant Direct Pub Date : 2024-07-02 eCollection Date: 2024-07-01 DOI: 10.1002/pld3.619
Seiji Takeda, Makiko Yoza, Sawako Ueda, Sakura Takeuchi, Akiteru Maeno, Tomoaki Sakamoto, Seisuke Kimura
{"title":"Exploring the diversity of galls on <i>Artemisia indica</i> induced by <i>Rhopalomyia</i> species through morphological and transcriptome analyses.","authors":"Seiji Takeda, Makiko Yoza, Sawako Ueda, Sakura Takeuchi, Akiteru Maeno, Tomoaki Sakamoto, Seisuke Kimura","doi":"10.1002/pld3.619","DOIUrl":"10.1002/pld3.619","url":null,"abstract":"<p><p>Plant galls generated by insects have highly organized structures, providing nutrients and shelter to the insects living within them. Most research on the physiological and molecular mechanisms of gall development has focused on single galls. To understand the diversity of gall development, we examined five galls with different morphologies generated by distinct species of <i>Rhopalomyia</i> (gall midge; Diptera: Cecidomyiidae) on a single host plant of <i>Artemisia indica</i> var. <i>maximowiczii</i> (Asteraceae). Vasculature developed de novo within the galls, indicating active transport of nutrients between galls and the host plant. Each gall had a different pattern of vasculature and lignification, probably due to differences in the site of gall generation and the gall midge species. Transcriptome analysis indicated that photosynthetic and cell wall-related genes were down-regulated in leaf and stem galls, respectively, compared with control leaf and stem tissues, whereas genes involved in floral organ development were up-regulated in all types of galls, indicating that transformation from source to sink organs occurs during gall development. Our results help to understand the diversity of galls on a single herbaceous host plant.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信