{"title":"GHCYP706A7 governs anthocyanin biosynthesis to mitigate ROS under alkali stress in cotton.","authors":"Yuping Sun, Ning Wang, Xiugui Chen, Fanjia Peng, Junling Zhang, Heling Song, Yuan Meng, Mengyue Liu, Hui Huang, Yapeng Fan, Lidong Wang, Zhining Yang, Menghao Zhang, Xiao Chen, Lanjie Zhao, Lixue Guo, Xuke Lu, Junjuan Wang, Shuai Wang, Jing Jiang, Wuwei Ye","doi":"10.1007/s00299-025-03453-6","DOIUrl":"10.1007/s00299-025-03453-6","url":null,"abstract":"<p><strong>Key message: </strong>Flavonoid 3'-hydroxylase synthesis gene-GHCYP706A7, enhanced cotton resistance to alkali stress by scavenging ROS to regulate anthocyanin synthesis. Anthocyanins are a class of flavonoids that play a significant role in mediating plant responses to adverse environmental conditions. Flavonoid 3'-hydroxylase (F3'H), a member of the cytochrome P-450 (CYP) family, is a pivotal enzyme involved in the biosynthesis of anthocyanins. The present study identified 398 CYPs in the Gossypium hirsutum genome, of which GHCYP706A7 was responsible for F3'H synthesis and its ability to respond to alkaline stress. GHCYP706A7 suppression through virus-induced gene silencing (VIGS) diminished tolerance to alkali stress in cotton, evidenced by significantly reduced anthocyanin synthesis, markedly decreased antioxidant capacity, notable increases in reactive oxygen species, severe cellular damage, and observably decreased stomatal opening. The cumulative effects of these physiological disruptions ultimately manifest in cotton wilting and fresh weight decline. These findings lay a foundation for further investigations into the role of CYPs in regulating anthocyanin synthesis and responding to alkali stress.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"61"},"PeriodicalIF":5.3,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143477085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liangliang Li, Aarti Gupta, Chenbo Zhu, Kun Xu, Yasuko Watanabe, Maho Tanaka, Motoaki Seki, Keiichi Mochida, Yuri Kanno, Mitsunori Seo, Kien Huu Nguyen, Cuong Duy Tran, Ha Duc Chu, Hengxia Yin, Kun-Peng Jia, Lam-Son Phan Tran, Xiaojian Yin, Weiqiang Li
{"title":"Strigolactone and karrikin receptors regulate phytohormone biosynthetic and catabolic processes.","authors":"Liangliang Li, Aarti Gupta, Chenbo Zhu, Kun Xu, Yasuko Watanabe, Maho Tanaka, Motoaki Seki, Keiichi Mochida, Yuri Kanno, Mitsunori Seo, Kien Huu Nguyen, Cuong Duy Tran, Ha Duc Chu, Hengxia Yin, Kun-Peng Jia, Lam-Son Phan Tran, Xiaojian Yin, Weiqiang Li","doi":"10.1007/s00299-025-03456-3","DOIUrl":"10.1007/s00299-025-03456-3","url":null,"abstract":"<p><strong>Key message: </strong>Karrikin plays a more critical role in affecting the homeostasis of ABA and cytokinins, while strigolactones play a more critical role in influencing the homeostasis of jasmonic acid and gibberellins. Strigolactones (SLs) and karrikins (KARs) regulate plant growth and development through their crosstalk, and through the crosstalk between them and other phytohormones, such as abscisic acid (ABA) and auxin. However, how SL and KAR signaling pathways influence the levels of other phytohormones is still unknown. Here, we performed a comparative transcriptome analysis of the Arabidopsis thaliana double mutant dwarf14 karrikin-insensitive 2 (d14 kai2), deficient in SL and KAR perception, and the wild-type (WT) using their rosette leaves. Ten gene ontology terms related to phytohormones were enriched with differentially expressed genes derived from the 'd14 kai2 vs WT' comparison. Our data revealed that the levels of auxin, ABA and salicylic acid (SA) were higher in d14 and kai2 single and d14 kai2 mutant plants than in WT, which was consistent with the results of previous investigations. In contrast, the levels of cytokinins (CKs) were found to be lower in all single and double mutants than in WT. The levels of active gibberellins were lower in d14 and d14 kai2 mutants than in WT, while they were comparable in kai2 and WT plants. Similarly, the levels of jasmonic acid (JA) were lower in d14 and d14 kai2 plants, but higher in kai2 plants than in WT. Both transcriptome and qRT-PCR analyses indicated that SL and KAR signaling pathways affect the levels of auxin, SA, CKs, gibberellin 4 (GA<sub>4</sub>) and ABA by influencing the expression of their biosynthetic (in case of auxin, SA, GA<sub>4</sub> and CKs) and catabolic (in case of ABA) genes. Collectively, our data demonstrated that KAI2 plays a more critical role in the homeostasis of ABA and CKs, while D14 plays a more critical role in the homeostasis of JA and gibberellins. Findings of this study indicate a complex and broad crosstalk among various phytohormones in plants, which can be considered for future exogenous applications and hormone engineering.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"60"},"PeriodicalIF":5.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HaNAC146 from sunflower overexpression enhances plant growth and stress tolerance.","authors":"Yuxin Liu, Wenhui Li, Lingling Zhang, Qixiu Huang, Xianfei Hou, Qiang Li, Zhonghua Lei, Youling Zeng","doi":"10.1007/s00299-024-03391-9","DOIUrl":"10.1007/s00299-024-03391-9","url":null,"abstract":"<p><strong>Key message: </strong>This study mined a gene, HaNAC146, holds promise as a valuable candidate gene for developing crops with improved stress tolerance and high production potential. NAC (NAM/ATAF/CUC) is one of the largest transcription factor families. They play important roles in regulating plant development, aging, morphogenesis, as well as biotic and abiotic stress. There is a delicate balance between stress resistance and plant growth and development. To date, few genes have been identified in crops that can simultaneously enhance resistance and increase production. Sunflower, as a pioneering crop in saline-alkali soils, exhibit a certain level of tolerance to drought, barren, and saline-alkali stress. In this study, we identified a transcription factor gene, HaNAC146, which can improve both the growth and abiotic stress tolerance in transgenic Arabidopsis thaliana. Our main findings indicated that HaNAC146 is induced in sunflower by various abiotic stress and some plant hormones. It is localized in the nucleus and has transcriptional activation activity. HaNAC146 can promote growth, and increase seed production by enhancing photosynthesis in transgenic Arabidopsis. Utilizing a transient transformation system in sunflower and a stable transformation platform in Arabidopsis, we demonstrated that HaNAC146 can enhance the resistance of both sunflower seedlings and Arabidopsis to salt and drought stress. This enhancement is achieved through multiple pathways, including increasing antioxidant capacity, accumulating osmotic modulating substances, improving photosynthetic efficiency, activating the expression of downstream stress-responsive genes and promoting stomatal closure with plant sensitivity to abscisic acid (ABA). These results also indicated that robust growth is a key factor in plant resistance to abiotic stress. This unique stress-responsive transcription factor, HaNAC146, holds promise as a valuable candidate gene for developing crops with improved stress tolerance and high production potential.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"59"},"PeriodicalIF":5.3,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cuong X Nguyen, Trong D Nguyen, Thao T Dinh, Linh T Nguyen, Linh K Ly, Ha H Chu, Thang C La, Phat T Do
{"title":"Prime editing via precise sequence insertion restores function of the recessive rc allele in rice.","authors":"Cuong X Nguyen, Trong D Nguyen, Thao T Dinh, Linh T Nguyen, Linh K Ly, Ha H Chu, Thang C La, Phat T Do","doi":"10.1007/s00299-025-03450-9","DOIUrl":"10.1007/s00299-025-03450-9","url":null,"abstract":"<p><strong>Key message: </strong>An improved prime editing system precisely corrected a 14-bp deletion in the rc gene of white rice, restoring the production of brown pigments.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"57"},"PeriodicalIF":5.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Guo, Yuting Hao, Ying Tang, Mengjia Wu, Rui Zhai, Chengquan Yang, Lingfei Xu, Zhigang Wang
{"title":"PKS1 involved in anthocyanin accumulation in red-skinned pear fruit.","authors":"Lei Guo, Yuting Hao, Ying Tang, Mengjia Wu, Rui Zhai, Chengquan Yang, Lingfei Xu, Zhigang Wang","doi":"10.1007/s00299-025-03444-7","DOIUrl":"10.1007/s00299-025-03444-7","url":null,"abstract":"<p><strong>Key message: </strong>PcPKS1 can prevent PcCSN5a from acting as an inhibitor of anthocyanin synthesis by binding to PcCSN5a, ultimately leading the accumulation of anthocyanins. Light is a crucial environmental factor that regulates anthocyanin accumulation in plants. However, the molecular mechanisms by which light signals influence anthocyanin accumulation in fruits have not yet been fully elucidated. We identified the differentially expressed gene Pyrus communis PHYTOCHROME KINASE SUBSTRATE 1 (PcPKS1), which is associated with anthocyanin accumulation in plants, in a previous study. Through measurements of the expression of PcPKS1 in 'Starkrimson' and 'Red Bartlett' pear fruit at various developmental stages and in different pear varieties, quantitative and transient expression experiments conducted on red and green skin tissues confirmed the relationship between PcPKS1 and anthocyanin accumulation. Pyrus communis COP9 SIGNALOSOME COMPLEX SUBUNIT 5A (PcCSN5a) protein, which interacts with PcPKS1, was identified from a yeast library screening. The interaction between the two proteins was validated through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and split-luciferase (Split-LUC) experiments. Subcellular localization and co-localization experiments revealed that PcPKS1 was localized to the cell membrane, whereas PcCSN5a was localized to the cell membrane and nucleus, with PcPKS1 and PcCSN5a co-localized on the cell membrane. Transient expression in strawberry fruit indicated that PcPKS1 positively regulated anthocyanin accumulation, whereas PcCSN5a negatively regulated anthocyanin accumulation and diminished the capacity of PcPKS1 to promote anthocyanin accumulation. This study provides novel insights into the molecular mechanisms underlying light-regulated anthocyanin accumulation in red-skinned pear fruit.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"58"},"PeriodicalIF":5.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wiktoria Parzych, Kamila Godel-Jędrychowska, Michał Świdziński, Janusz Niedojadło, Ewa Kurczyńska, Katarzyna Niedojadło
{"title":"Bioimaging insights into structural pathways of cell-to-cell communication within the male (MGU) and female (FGU) germ units of Arabidopsis thaliana.","authors":"Wiktoria Parzych, Kamila Godel-Jędrychowska, Michał Świdziński, Janusz Niedojadło, Ewa Kurczyńska, Katarzyna Niedojadło","doi":"10.1007/s00299-025-03441-w","DOIUrl":"10.1007/s00299-025-03441-w","url":null,"abstract":"<p><strong>Key message: </strong>Cytoplasmic connections are present between cells within male and female germ units (MGU, FGU), suggesting potential structural pathways for communication. Cell-to-cell communication within the male germ unit (MGU), which consists of two sperm cells and the vegetative cell nucleus, and the female germ unit (FGU), comprising the synergids, the egg cell, and the central cell, is crucial for gamete maturation, fertilization, and early embryogenesis in angiosperms. The MGU facilitates the transport and delivery of immotile sperm cells via the elongating pollen tube to the FGU/embryo sac, which is deeply embedded within the ovule and the ovary. Through applying various bioimaging techniques at both electron and light microscopy levels, we examine the structure and the function of these units in the model plant Arabidopsis thaliana, with a particular focus on potential structural pathways for communication. In the MGU, this communication is facilitated by a cytoplasmic projection that connects the sperm cells to the lobed vegetative nucleus. In the FGU, the extracellular matrix adjacent to the egg cell, central cell, and synergids plays a similar role. We discuss our findings in the context of previous studies on Hyacinthus orientalis, where, in contrast to Arabidopsis-which possesses a tricellular pollen structure-sperm cells are formed within the growing pollen tube.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"56"},"PeriodicalIF":5.3,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828830/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revisiting development and physiology of wild rice relatives for crop improvement and climate resilience.","authors":"Jyotirmaya Mathan, Aditi Dwivedi, Aashish Ranjan","doi":"10.1007/s00299-025-03448-3","DOIUrl":"10.1007/s00299-025-03448-3","url":null,"abstract":"<p><strong>Key message: </strong>The review summarizes developmental and physiologic traits of wild rice relatives that can be targeted in mainstream rice-improvement programs for yield increases under changing climate. Increasing rice yield and productivity under changing climatic conditions is imperative for sustainable food security, given rice is a major staple crop around the world. Natural variation in crop plants, including wild relatives, offers remarkable genetic variability to explore the desirable developmental and physiologic traits for crop improvement. Wild relatives of rice, with distinct developmental and physiologic features compared to cultivated varieties, are the potential genetic and genomic resource for rice yield increases under changing climate. A thorough genetic basis of rice developmental and architectural changes during domestication is now established with the identification and characterization of domestication genes. Photosynthetically efficient wild rice accessions, with desirable developmental, physiologic, and metabolic traits, have been identified in recent years that could be instrumental for rice improvement. While several abiotic and biotic stress-tolerant wild relatives of rice along with the associated genetic loci have been identified over the years, a comprehensive insight into the desirable developmental and physiologic attributes of the wild rice is limited. Moreover, the usage of wild rice is not streamlined in rice-improvement programs due to genetic and genomic constraints. In this review, we summarize the desirable developmental and physiologic features of wild rice species that can be exploited for combining yield increases with climate resilience in rice-improvement programs.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"55"},"PeriodicalIF":5.3,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aidhya Irhash Putra, Muhammad Naveed Khan, Nurhaida Kamaruddin, Raja Farhana R Khairuddin, Jameel R Al-Obaidi, Brenda Juana Flores, Luis Fernando Flores
{"title":"Proteomic insights into fruit-pathogen interactions: managing biotic stress in fruit.","authors":"Aidhya Irhash Putra, Muhammad Naveed Khan, Nurhaida Kamaruddin, Raja Farhana R Khairuddin, Jameel R Al-Obaidi, Brenda Juana Flores, Luis Fernando Flores","doi":"10.1007/s00299-025-03443-8","DOIUrl":"10.1007/s00299-025-03443-8","url":null,"abstract":"<p><strong>Keymessage: </strong>Proteomics has revealed complex immune responses in fruits, leading to the identification of potential disease biomarkers and resistance mechanisms. Fruit diseases caused by fungal and bacterial pathogens present critical challenges to global food security by reducing fruit shelf life and quality. This review explores the molecular dynamics of fruit-pathogen interactions using advanced proteomic techniques. These approaches include mass spectrometry-based identification, gel-based, and gel-free strategies, tailored to the unique compositions of fruit tissues for accurate protein extraction and identification. Proteomic studies reveal pathogen-induced changes in fruit proteomes, including the upregulation of defence-related proteins and suppression of metabolic pathways crucial for pathogen survival. Case studies on tomatoes, apples, and bananas highlight specific pathogen-responsive proteins, such as PR proteins and enzymes involved in ROS scavenging, which play roles in disease resistance mechanisms. The review further demonstrates the utility of proteomic data in identifying early disease biomarkers, guiding genetic improvements for disease resistance, and optimizing pathogen control measures. Integrating proteomic insights with transcriptomics and metabolomics provides a multidimensional understanding of fruit-pathogen interactions, paving the way for innovative solutions in agriculture. Future research should prioritize multi-omics approaches and field-level validations to translate laboratory findings into practical applications. The advancements discussed underscore the transformative role of proteomics in improving food security and sustainability amid challenges posed by climate change and increasing global food demand.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"54"},"PeriodicalIF":5.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High concentration of phosphate treatment increased the tolerance of Robinia pseudoacacia roots to salt stress.","authors":"Honghao Gan, Jianmin Chu, Jia Sun, Qian Wang","doi":"10.1007/s00299-025-03446-5","DOIUrl":"10.1007/s00299-025-03446-5","url":null,"abstract":"<p><strong>Key message: </strong>High P increased the tolerance of R. pseudoacacia roots to salt stress. Salt is an important abiotic factor that restricts plant growth and development in soil. An appropriate concentration of P can increase plant tolerance to salt stress. We investigated the physiological and transcriptional regulatory effects of high P (HP) or low P (LP) on the response of R. pseudoacacia roots to salt stress. A pot experiment was carried out to grow R. pseudoacacia seedlings in vermiculite media supplemented with 0 mM, 150 mM or 300 mM NaCl under HP or LP conditions. The root dry weight and concentrations of free proline, P, ions, and phytohormones were measured, and the transcription of the genes was analyzed under NaCl stress under HP or LP conditions. The results revealed that R. pseudoacacia responds to NaCl stress by regulating the absorption and utilization of P and the levels of free proline, phytohormones and Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup> as well as changing the expression levels of key genes. Compared with those under the LP condition, the roots of the R. pseudoacacia under the HP condition presented greater P concentrations, lower JA concentrations, and more stable K<sup>+</sup> levels when subjected to NaCl stress, which increased their tolerance to NaCl stress. Moreover, genes involved in the cell wall, root growth, root architecture regulation, biomass accumulation, stress response, osmotic regulation and ion balance maintenance were upregulated under NaCl stress under HP conditions. In addition, NaCl stress impairs N metabolism under LP conditions. Our findings provide new insights into the response of woody plants to salt stress under different P conditions and contribute to the development of scientific afforestation in saline-alkali areas.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"53"},"PeriodicalIF":5.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification and expression analysis of the RBOH gene family of Isatis indigotica Fort. and the potential regulation mechanism of RBOH gene on H<sub>2</sub>O<sub>2</sub> under salt stress.","authors":"Junbai Ma, Weichao Ren, Shan Jiang, Lingyang Kong, Lengleng Ma, Jiajun He, Danli Wang, Weili Liu, Wei Ma, Xiubo Liu","doi":"10.1007/s00299-025-03442-9","DOIUrl":"10.1007/s00299-025-03442-9","url":null,"abstract":"<p><strong>Key message: </strong>RBOH gene may regulate the resistance of Isatis indigotica Fort. to salt stress by mediating the production of H<sub>2</sub>O<sub>2</sub>. RBOH gene plays an important role in plant growth and development, abiotic and biotic stress response, and hormone signalling. However, studies on RBOH gene expression and molecular mechanism of Isatis indigotica Fort. under salt stress have not been reported. This study identified 10 genes of the I. indigotica RBOH gene family (IiRBOH) and divided them into five subfamilies (I-V). Genes within the same class show conserved structural features and similar amino acid sequences. Analysis of CRE suggested that IiRBOH genes might play roles in growth and development, metabolism, hormone regulation, and stress response. Two physiological indicators of I. indigotica treated with salt for different days were detected. It was found that the content of H<sub>2</sub>O<sub>2</sub> in the I. indigotica tissue first increased, then decreased and increased again. The catalase activity also showed a trend of first increasing and then decreasing. The qRT-PCR results showed that these IiRBOH genes showed different expression patterns in response to salt stress, and some of these genes may be involved in the resistance of I. indigotica to salt stress. Through RT-PCR analysis and screening on the PlantCARE website, it was found that IiRBOHA and IiRBOHC not only possess W-box CRE but also exhibit high expression under salt stress. Y1H experiments were conducted with the WRKY genes predicted by phylogenetic analysis to regulate salt stress potentially, and it was discovered that IiWRKY6 and IiWRKY54 can directly activate the transcription of the IiRBOHA gene promoter. This study preliminarily explored the mechanism by which the RBOH gene in I. indigotica mediates H<sub>2</sub>O<sub>2</sub> to resist salt stress, thus laying a foundation for further research on the biological functions of the RBOH gene in I. indigotica.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"52"},"PeriodicalIF":5.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}