{"title":"PpBOR1 is critical for the excess borate tolerance of Physcomitrium patens.","authors":"Ishfaq Ahmad, Xuejia Sun, Yangyang Yu, Fangni Jia, Yizuo Li, Qiang Lv, Yong Hu, Fang Bao, Yikun He","doi":"10.1007/s00299-025-03473-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Functional analysis of BORs in Physcomitrium patens indicates that both PpBOR1 and PpBOR2 possess boron efflux transporter activity, and PpBOR1 is essential for the plant's tolerance to excessive boron stress. Boron (B), an essential plant micronutrient, is crucial for achieving optimal agricultural yield. Although the function of the BOR family proteins as borate efflux transporters has been established in tracheophytes, the role of their counterparts in non-vascular plants has not been thoroughly investigated. Our phylogenetic analysis reveals that bryophyte BOR proteins originated from the basal bryophytes Takakia and Sphagnum, and can be classified into two subclasses. There are two BOR homologs in P. patens: PpBOR1 and PpBOR2, which belong to different subclades. The PpBOR1 and PpBOR2 genes are predominantly expressed in gametophores, with PpBOR1 exhibiting significantly higher expression levels than PpBOR2. Both proteins localize at the plasma membrane and can export borate from yeast cells. Disruption of PpBOR2 expression does not affect plant growth under normal conditions. However, PpBOR1-knockout gametophores exhibit stunted growth under excess boron conditions, whereas PpBOR1-overexpressing plants show enhanced tolerance compared to wild-type plants. In summary, our research suggests that BOR homologous proteins in P. patens have borate efflux activities similar to those of the BOR family members in angiosperms. PpBOR1 is critical in conferring tolerance to excessive boron stress in P. patens.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 4","pages":"81"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03473-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: Functional analysis of BORs in Physcomitrium patens indicates that both PpBOR1 and PpBOR2 possess boron efflux transporter activity, and PpBOR1 is essential for the plant's tolerance to excessive boron stress. Boron (B), an essential plant micronutrient, is crucial for achieving optimal agricultural yield. Although the function of the BOR family proteins as borate efflux transporters has been established in tracheophytes, the role of their counterparts in non-vascular plants has not been thoroughly investigated. Our phylogenetic analysis reveals that bryophyte BOR proteins originated from the basal bryophytes Takakia and Sphagnum, and can be classified into two subclasses. There are two BOR homologs in P. patens: PpBOR1 and PpBOR2, which belong to different subclades. The PpBOR1 and PpBOR2 genes are predominantly expressed in gametophores, with PpBOR1 exhibiting significantly higher expression levels than PpBOR2. Both proteins localize at the plasma membrane and can export borate from yeast cells. Disruption of PpBOR2 expression does not affect plant growth under normal conditions. However, PpBOR1-knockout gametophores exhibit stunted growth under excess boron conditions, whereas PpBOR1-overexpressing plants show enhanced tolerance compared to wild-type plants. In summary, our research suggests that BOR homologous proteins in P. patens have borate efflux activities similar to those of the BOR family members in angiosperms. PpBOR1 is critical in conferring tolerance to excessive boron stress in P. patens.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.