Physiological reviews最新文献

筛选
英文 中文
The human periconceptional maternal-embryonic space in health and disease. 人类围孕期母胚空间的健康与疾病。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2023-07-01 DOI: 10.1152/physrev.00050.2021
Inmaculada Moreno, Antonio Capalbo, Aymara Mas, Tamara Garrido-Gomez, Beatriz Roson, Maurizio Poli, Eva Dimitriadis, Xavier Santamaria, Felipe Vilella, Carlos Simon
{"title":"The human periconceptional maternal-embryonic space in health and disease.","authors":"Inmaculada Moreno,&nbsp;Antonio Capalbo,&nbsp;Aymara Mas,&nbsp;Tamara Garrido-Gomez,&nbsp;Beatriz Roson,&nbsp;Maurizio Poli,&nbsp;Eva Dimitriadis,&nbsp;Xavier Santamaria,&nbsp;Felipe Vilella,&nbsp;Carlos Simon","doi":"10.1152/physrev.00050.2021","DOIUrl":"https://doi.org/10.1152/physrev.00050.2021","url":null,"abstract":"<p><p>Pregnancy is established during the periconceptional period as a continuum beginning with blastocyst attachment to the endometrial epithelial surface followed by embryo invasion and placenta formation. This period sets the foundation for the child and mother's health during pregnancy. Emerging evidence indicates that prevention of downstream pathologies in both the embryo/newborn and pregnant mother may be possible at this stage. In this review, we discuss current advances in the periconceptional space, including the preimplantation human embryo and maternal endometrium. We also discuss the role of the maternal decidua, the periconceptional maternal-embryonic interface, the dialogue between these elements, and the importance of the endometrial microbiome in the implantation process and pregnancy. Finally, we discuss the myometrium in the periconceptional space and review its role in determining pregnancy health.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"1965-2038"},"PeriodicalIF":33.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9469836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Long-term variability of human health-related solar ultraviolet-B radiation doses for the 1980s to the end of the 21st century. 20世纪80年代至21世纪末与人类健康有关的太阳紫外线b辐射剂量的长期变异性。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2023-07-01 DOI: 10.1152/physrev.00031.2022
Christos Zerefos, Ilias Fountoulakis, Kostas Eleftheratos, Andreas Kazantzidis
{"title":"Long-term variability of human health-related solar ultraviolet-B radiation doses for the 1980s to the end of the 21st century.","authors":"Christos Zerefos,&nbsp;Ilias Fountoulakis,&nbsp;Kostas Eleftheratos,&nbsp;Andreas Kazantzidis","doi":"10.1152/physrev.00031.2022","DOIUrl":"https://doi.org/10.1152/physrev.00031.2022","url":null,"abstract":"<p><p>Solar ultraviolet-B (UV-B) radiation has played a crucial role in the evolution of life on Earth, and potential changes in its levels could affect the health and functionality of humans and the ecosystems. UV exposure presents both risks and benefits to humans. However, optimal UV-B radiation exposure depends on several environmental and physiological factors and cannot be easily determined. The present document provides a review of the current state of knowledge relative to the effects of UV-B radiation on human health. A brief description of the physical mechanisms that control the levels of solar UV-B radiation at the Earth's surface is provided, with special emphasis on the role of ozone and the importance of the Montreal Protocol. A comprehensive review of studies reporting current trends in levels of surface solar UV-B radiation and projections of future levels reveals the dominant role of climatic changes in the long-term variability of UV-B radiation and its impact on the development of melanomas as well as eye disorders. The review provides strong evidence that despite the success of the Montreal Protocol and the expected ozone recovery, the future evolution of the levels of solar UV-B radiation at the Earth's surface is not certain.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"1789-1826"},"PeriodicalIF":33.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9835515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane adhesion junctions regulate airway smooth muscle phenotype and function. 膜粘连接头调节气道平滑肌的表型和功能。
IF 29.9 1区 医学
Physiological reviews Pub Date : 2023-07-01 Epub Date: 2023-02-16 DOI: 10.1152/physrev.00020.2022
Wenwu Zhang, Yidi Wu, Susan J Gunst
{"title":"Membrane adhesion junctions regulate airway smooth muscle phenotype and function.","authors":"Wenwu Zhang, Yidi Wu, Susan J Gunst","doi":"10.1152/physrev.00020.2022","DOIUrl":"10.1152/physrev.00020.2022","url":null,"abstract":"<p><p>The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"2321-2347"},"PeriodicalIF":29.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9627248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. 闰盘:心肌细胞机电同步的独特细胞器
IF 29.9 1区 医学
Physiological reviews Pub Date : 2023-07-01 Epub Date: 2023-02-02 DOI: 10.1152/physrev.00021.2022
Morten S Nielsen, Chantal J M van Opbergen, Toon A B van Veen, Mario Delmar
{"title":"The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes.","authors":"Morten S Nielsen, Chantal J M van Opbergen, Toon A B van Veen, Mario Delmar","doi":"10.1152/physrev.00021.2022","DOIUrl":"10.1152/physrev.00021.2022","url":null,"abstract":"<p><p>The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an \"organelle\" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"2271-2319"},"PeriodicalIF":29.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10501392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide association studies of cardiovascular disease. 心血管疾病的全基因组关联研究。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2023-07-01 DOI: 10.1152/physrev.00024.2022
Roddy Walsh, Sean J Jurgens, Jeanette Erdmann, Connie R Bezzina
{"title":"Genome-wide association studies of cardiovascular disease.","authors":"Roddy Walsh,&nbsp;Sean J Jurgens,&nbsp;Jeanette Erdmann,&nbsp;Connie R Bezzina","doi":"10.1152/physrev.00024.2022","DOIUrl":"https://doi.org/10.1152/physrev.00024.2022","url":null,"abstract":"<p><p>Genome-wide association studies (GWAS) aim to identify common genetic variants that are associated with traits and diseases. Since 2005, more than 5,000 GWAS have been published for almost as many traits. These studies have offered insights into the loci and genes underlying phenotypic traits, have highlighted genetic correlations across traits and diseases, and are beginning to demonstrate clinical utility by identifying individuals at increased risk for common diseases. GWAS have been widely utilized across cardiovascular diseases and associated phenotypic traits, with insights facilitated by multicenter registry studies and large biobank data sets. In this review, we describe how GWAS have informed the genetic architecture of cardiovascular diseases and the insights they have provided into disease pathophysiology, using archetypal conditions for both common and rare diseases. We also describe how biobank data sets can complement disease-specific studies, particularly for rarer cardiovascular diseases, and how findings from GWAS have the potential to impact on clinical care. Finally, we discuss the outstanding challenges facing research in this field and how they can be addressed.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"2039-2055"},"PeriodicalIF":33.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9469320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
The molecular athlete: exercise physiology from mechanisms to medals. 分子运动员:从运动机制到奖牌的运动生理学。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2023-07-01 DOI: 10.1152/physrev.00017.2022
Regula Furrer, John A Hawley, Christoph Handschin
{"title":"The molecular athlete: exercise physiology from mechanisms to medals.","authors":"Regula Furrer,&nbsp;John A Hawley,&nbsp;Christoph Handschin","doi":"10.1152/physrev.00017.2022","DOIUrl":"https://doi.org/10.1152/physrev.00017.2022","url":null,"abstract":"<p><p>Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a \"trial-and-error\" approach, with the experience and practices of successful coaches and athletes often providing the bases for \"post hoc\" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from \"molecules to medals.\"</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"1693-1787"},"PeriodicalIF":33.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9546451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca2+ signaling. 肺动脉高压的病理生理学和致病机制:膜受体、离子通道和 Ca2+ 信号的作用。
IF 29.9 1区 医学
Physiological reviews Pub Date : 2023-07-01 Epub Date: 2022-11-24 DOI: 10.1152/physrev.00030.2021
Angela Balistrieri, Ayako Makino, Jason X-J Yuan
{"title":"Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca<sup>2+</sup> signaling.","authors":"Angela Balistrieri, Ayako Makino, Jason X-J Yuan","doi":"10.1152/physrev.00030.2021","DOIUrl":"10.1152/physrev.00030.2021","url":null,"abstract":"<p><p>The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca<sup>2+</sup> signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"1827-1897"},"PeriodicalIF":29.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9469277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. 急性运动的分子反应及其与骨骼肌适应运动训练的相关性。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2023-07-01 DOI: 10.1152/physrev.00054.2021
Brendan Egan, Adam P Sharples
{"title":"Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training.","authors":"Brendan Egan,&nbsp;Adam P Sharples","doi":"10.1152/physrev.00054.2021","DOIUrl":"https://doi.org/10.1152/physrev.00054.2021","url":null,"abstract":"<p><p>Repeated, episodic bouts of skeletal muscle contraction undertaken frequently as structured exercise training are a potent stimulus for physiological adaptation in many organs. Specifically, in skeletal muscle, remarkable plasticity is demonstrated by the remodeling of muscle structure and function in terms of muscular size, force, endurance, and contractile velocity as a result of the functional demands induced by various types of exercise training. This plasticity, and the mechanistic basis for adaptations to skeletal muscle in response to exercise training, are underpinned by activation and/or repression of molecular pathways and processes in response to each individual acute exercise session. These pathways include the transduction of signals arising from neuronal, mechanical, metabolic, and hormonal stimuli through complex signal transduction networks, which are linked to a myriad of effector proteins involved in the regulation of pre- and posttranscriptional processes, and protein translation and degradation processes. This review therefore describes acute exercise-induced signal transduction and the molecular responses to acute exercise in skeletal muscle including emerging concepts such as epigenetic pre- and posttranscriptional regulation and the regulation of protein translation and degradation. A critical appraisal of methodological approaches and the current state of knowledge informs a series of recommendations offered as future directions in the field.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"2057-2170"},"PeriodicalIF":33.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9457072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
The multiple roles of salt-inducible kinases in regulating physiology. 盐诱导激酶在生理调节中的多重作用。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2023-07-01 DOI: 10.1152/physrev.00023.2022
Aarti Jagannath, Lewis Taylor, Yining Ru, Zeinab Wakaf, Kayomavua Akpobaro, Sridhar Vasudevan, Russell G Foster
{"title":"The multiple roles of salt-inducible kinases in regulating physiology.","authors":"Aarti Jagannath,&nbsp;Lewis Taylor,&nbsp;Yining Ru,&nbsp;Zeinab Wakaf,&nbsp;Kayomavua Akpobaro,&nbsp;Sridhar Vasudevan,&nbsp;Russell G Foster","doi":"10.1152/physrev.00023.2022","DOIUrl":"https://doi.org/10.1152/physrev.00023.2022","url":null,"abstract":"<p><p>Salt-inducible kinases (SIKs), which comprise a family of three homologous serine-threonine kinases, were first described for their role in sodium sensing but have since been shown to regulate multiple aspects of physiology. These kinases are activated or deactivated in response to extracellular signals that are cell surface receptor mediated and go on to phosphorylate multiple targets including the transcription cofactors CRTC1-3 and the class IIa histone deacetylases (HDACs). Thus, the SIK family conveys signals about the cellular environment to reprogram transcriptional and posttranscriptional processes in response. In this manner, SIKs have been shown to regulate metabolic responses to feeding/fasting, cell division and oncogenesis, inflammation, immune responses, and most recently, sleep and circadian rhythms. Sleep and circadian rhythms are master regulators of physiology and are exquisitely sensitive to regulation by environmental light and physiological signals such as the need for sleep. Salt-inducible kinases have been shown to be central to the molecular regulation of both these processes. Here, we summarize the molecular mechanisms by which SIKs control these different domains of physiology and highlight where there is mechanistic overlap with sleep/circadian rhythm control.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"2231-2269"},"PeriodicalIF":33.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9487148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. 牙齿发育和再生过程中的间质凝结:关注器官生成的转化问题。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2023-07-01 Epub Date: 2023-01-19 DOI: 10.1152/physrev.00019.2022
Bing-Dong Sui, Chen-Xi Zheng, Wan-Min Zhao, Kun Xuan, Bei Li, Yan Jin
{"title":"Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis.","authors":"Bing-Dong Sui, Chen-Xi Zheng, Wan-Min Zhao, Kun Xuan, Bei Li, Yan Jin","doi":"10.1152/physrev.00019.2022","DOIUrl":"10.1152/physrev.00019.2022","url":null,"abstract":"<p><p>The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 3","pages":"1899-1964"},"PeriodicalIF":33.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9519064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信