Hussam El-Nashar, Malak Sabry, Yuan-Tsan Tseng, Nadine Francis, Najma Latif, Kim H Parker, James E Moore, Magdi H Yacoub
{"title":"主动脉瓣装置的多尺度结构和功能。","authors":"Hussam El-Nashar, Malak Sabry, Yuan-Tsan Tseng, Nadine Francis, Najma Latif, Kim H Parker, James E Moore, Magdi H Yacoub","doi":"10.1152/physrev.00038.2022","DOIUrl":null,"url":null,"abstract":"<p><p>Whereas studying the aortic valve in isolation has facilitated the development of life-saving procedures and technologies, the dynamic interplay of the aortic valve and its surrounding structures is vital to preserving their function across the wide range of conditions encountered in an active lifestyle. Our view is that these structures should be viewed as an integrated functional unit, here referred to as the aortic valve apparatus (AVA). The coupling of the aortic valve and root, left ventricular outflow tract, and blood circulation is crucial for AVA's functions: unidirectional flow out of the left ventricle, coronary perfusion, reservoir function, and support of left ventricular function. In this review, we explore the multiscale biological and physical phenomena that underlie the simultaneous fulfillment of these functions. A brief overview of the tools used to investigate the AVA, such as medical imaging modalities, experimental methods, and computational modeling, specifically fluid-structure interaction (FSI) simulations, is included. Some pathologies affecting the AVA are explored, and insights are provided on treatments and interventions that aim to maintain quality of life. The concepts explained in this article support the idea of AVA being an integrated functional unit and help identify unanswered research questions. Incorporating phenomena through the molecular, micro, meso, and whole tissue scales is crucial for understanding the sophisticated normal functions and diseases of the AVA.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1487-1532"},"PeriodicalIF":29.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495199/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiscale structure and function of the aortic valve apparatus.\",\"authors\":\"Hussam El-Nashar, Malak Sabry, Yuan-Tsan Tseng, Nadine Francis, Najma Latif, Kim H Parker, James E Moore, Magdi H Yacoub\",\"doi\":\"10.1152/physrev.00038.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whereas studying the aortic valve in isolation has facilitated the development of life-saving procedures and technologies, the dynamic interplay of the aortic valve and its surrounding structures is vital to preserving their function across the wide range of conditions encountered in an active lifestyle. Our view is that these structures should be viewed as an integrated functional unit, here referred to as the aortic valve apparatus (AVA). The coupling of the aortic valve and root, left ventricular outflow tract, and blood circulation is crucial for AVA's functions: unidirectional flow out of the left ventricle, coronary perfusion, reservoir function, and support of left ventricular function. In this review, we explore the multiscale biological and physical phenomena that underlie the simultaneous fulfillment of these functions. A brief overview of the tools used to investigate the AVA, such as medical imaging modalities, experimental methods, and computational modeling, specifically fluid-structure interaction (FSI) simulations, is included. Some pathologies affecting the AVA are explored, and insights are provided on treatments and interventions that aim to maintain quality of life. The concepts explained in this article support the idea of AVA being an integrated functional unit and help identify unanswered research questions. Incorporating phenomena through the molecular, micro, meso, and whole tissue scales is crucial for understanding the sophisticated normal functions and diseases of the AVA.</p>\",\"PeriodicalId\":20193,\"journal\":{\"name\":\"Physiological reviews\",\"volume\":\" \",\"pages\":\"1487-1532\"},\"PeriodicalIF\":29.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495199/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/physrev.00038.2022\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00038.2022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Multiscale structure and function of the aortic valve apparatus.
Whereas studying the aortic valve in isolation has facilitated the development of life-saving procedures and technologies, the dynamic interplay of the aortic valve and its surrounding structures is vital to preserving their function across the wide range of conditions encountered in an active lifestyle. Our view is that these structures should be viewed as an integrated functional unit, here referred to as the aortic valve apparatus (AVA). The coupling of the aortic valve and root, left ventricular outflow tract, and blood circulation is crucial for AVA's functions: unidirectional flow out of the left ventricle, coronary perfusion, reservoir function, and support of left ventricular function. In this review, we explore the multiscale biological and physical phenomena that underlie the simultaneous fulfillment of these functions. A brief overview of the tools used to investigate the AVA, such as medical imaging modalities, experimental methods, and computational modeling, specifically fluid-structure interaction (FSI) simulations, is included. Some pathologies affecting the AVA are explored, and insights are provided on treatments and interventions that aim to maintain quality of life. The concepts explained in this article support the idea of AVA being an integrated functional unit and help identify unanswered research questions. Incorporating phenomena through the molecular, micro, meso, and whole tissue scales is crucial for understanding the sophisticated normal functions and diseases of the AVA.
期刊介绍:
Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.