Physiological reviews最新文献

筛选
英文 中文
Best practices for data management and sharing in experimental biomedical research. 生物医学实验研究数据管理与共享的最佳实践。
IF 28.7 1区 医学
Physiological reviews Pub Date : 2024-07-01 Epub Date: 2024-03-07 DOI: 10.1152/physrev.00043.2023
Teresa Cunha-Oliveira, John P A Ioannidis, Paulo J Oliveira
{"title":"Best practices for data management and sharing in experimental biomedical research.","authors":"Teresa Cunha-Oliveira, John P A Ioannidis, Paulo J Oliveira","doi":"10.1152/physrev.00043.2023","DOIUrl":"10.1152/physrev.00043.2023","url":null,"abstract":"<p><p>Effective data management is crucial for scientific integrity and reproducibility, a cornerstone of scientific progress. Well-organized and well-documented data enable validation and building on results. Data management encompasses activities including organization, documentation, storage, sharing, and preservation. Robust data management establishes credibility, fostering trust within the scientific community and benefiting researchers' careers. In experimental biomedicine, comprehensive data management is vital due to the typically intricate protocols, extensive metadata, and large datasets. Low-throughput experiments, in particular, require careful management to address variations and errors in protocols and raw data quality. Transparent and accountable research practices rely on accurate documentation of procedures, data collection, and analysis methods. Proper data management ensures long-term preservation and accessibility of valuable datasets. Well-managed data can be revisited, contributing to cumulative knowledge and potential new discoveries. Publicly funded research has an added responsibility for transparency, resource allocation, and avoiding redundancy. Meeting funding agency expectations increasingly requires rigorous methodologies, adherence to standards, comprehensive documentation, and widespread sharing of data, code, and other auxiliary resources. This review provides critical insights into raw and processed data, metadata, high-throughput versus low-throughput datasets, a common language for documentation, experimental and reporting guidelines, efficient data management systems, sharing practices, and relevant repositories. We systematically present available resources and optimal practices for wide use by experimental biomedical researchers.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1387-1408"},"PeriodicalIF":28.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140050180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The anterior chamber of the eye technology and its anatomical, optical, and immunological bases. 眼球前房技术及其解剖学、光学和免疫学基础。
IF 29.9 1区 医学
Physiological reviews Pub Date : 2024-07-01 Epub Date: 2024-01-11 DOI: 10.1152/physrev.00024.2023
Shao-Nian Yang, Yue Shi, Per-Olof Berggren
{"title":"The anterior chamber of the eye technology and its anatomical, optical, and immunological bases.","authors":"Shao-Nian Yang, Yue Shi, Per-Olof Berggren","doi":"10.1152/physrev.00024.2023","DOIUrl":"10.1152/physrev.00024.2023","url":null,"abstract":"<p><p>The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"881-929"},"PeriodicalIF":29.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139417871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ceramides are fuel gauges on the drive to cardiometabolic disease. 神经酰胺是通往心脏代谢疾病的 "燃料计"。
IF 29.9 1区 医学
Physiological reviews Pub Date : 2024-07-01 Epub Date: 2024-02-01 DOI: 10.1152/physrev.00008.2023
Joseph L Wilkerson, Sean M Tatum, William L Holland, Scott A Summers
{"title":"Ceramides are fuel gauges on the drive to cardiometabolic disease.","authors":"Joseph L Wilkerson, Sean M Tatum, William L Holland, Scott A Summers","doi":"10.1152/physrev.00008.2023","DOIUrl":"10.1152/physrev.00008.2023","url":null,"abstract":"<p><p>Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1061-1119"},"PeriodicalIF":29.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139651524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The hormonal control of parturition. 分娩的荷尔蒙控制
IF 29.9 1区 医学
Physiological reviews Pub Date : 2024-07-01 Epub Date: 2024-02-08 DOI: 10.1152/physrev.00019.2023
Emily Hamburg-Shields, Sam Mesiano
{"title":"The hormonal control of parturition.","authors":"Emily Hamburg-Shields, Sam Mesiano","doi":"10.1152/physrev.00019.2023","DOIUrl":"10.1152/physrev.00019.2023","url":null,"abstract":"<p><p>Parturition is a complex physiological process that must occur in a reliable manner and at an appropriate gestation stage to ensure a healthy newborn and mother. To this end, hormones that affect the function of the gravid uterus, especially progesterone (P4), 17β-estradiol (E<sub>2</sub>), oxytocin (OT), and prostaglandins (PGs), play pivotal roles. P4 via the nuclear P4 receptor (PR) promotes uterine quiescence and for most of pregnancy exerts a dominant block to labor. Loss of the P4 block to parturition in association with a gain in prolabor actions of E<sub>2</sub> are key transitions in the hormonal cascade leading to parturition. P4 withdrawal can occur through various mechanisms depending on species and physiological context. Parturition in most species involves inflammation within the uterine tissues and especially at the maternal-fetal interface. Local PGs and other inflammatory mediators may initiate parturition by inducing P4 withdrawal. Withdrawal of the P4 block is coordinated with increased E<sub>2</sub> actions to enhance uterotonic signals mediated by OT and PGs to promote uterine contractions, cervix softening, and membrane rupture, i.e., labor. This review examines recent advances in research to understand the hormonal control of parturition, with focus on the roles of P4, E<sub>2</sub>, PGs, OT, inflammatory cytokines, and placental peptide hormones together with evolutionary biology of and implications for clinical management of human parturition.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1121-1145"},"PeriodicalIF":29.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380996/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degenerate Neuronal and Circuit Mechanisms Important for Generating Rhythmic Motor Patterns 生成节律性运动模式的重要退化神经元和电路机制
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-06-13 DOI: 10.1152/physrev.00003.2024
Ronald L Calabrese, Eve Marder
{"title":"Degenerate Neuronal and Circuit Mechanisms Important for Generating Rhythmic Motor Patterns","authors":"Ronald L Calabrese, Eve Marder","doi":"10.1152/physrev.00003.2024","DOIUrl":"https://doi.org/10.1152/physrev.00003.2024","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"33 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A versatile delivery vehicle for cellular oxygen and fuels, or metabolic sensor? - A review and perspective on the functions of myoglobin 细胞氧气和燃料的多功能输送工具,还是代谢传感器?- 肌红蛋白功能的回顾与展望
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-05-02 DOI: 10.1152/physrev.00031.2023
Kiran Kumar Adepu, Andriy Anishkin, Sean H. Adams, Sree V Chintapalli
{"title":"A versatile delivery vehicle for cellular oxygen and fuels, or metabolic sensor? - A review and perspective on the functions of myoglobin","authors":"Kiran Kumar Adepu, Andriy Anishkin, Sean H. Adams, Sree V Chintapalli","doi":"10.1152/physrev.00031.2023","DOIUrl":"https://doi.org/10.1152/physrev.00031.2023","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"35 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion 控制胰岛素和胰高血糖素分泌的神经元葡萄糖传感机制和回路
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-04-25 DOI: 10.1152/physrev.00038.2023
Bernard Thorens
{"title":"Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion","authors":"Bernard Thorens","doi":"10.1152/physrev.00038.2023","DOIUrl":"https://doi.org/10.1152/physrev.00038.2023","url":null,"abstract":"Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle or glucose production by the liver. The balance between the secretion of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet b-cells and a-cells can sense variations in glycemia and respond by an appropriate secretory response to restore euglycemia. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and, thus, a vital interest in ensuring that glycemic levels never fall below ~5mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cells secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we will present the autonomic innervation of the pancreatic islets; the mechanisms of neurons activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow to integrate specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function. Finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia.","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"23 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140648916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NETosis creates a link between diabetes and Long COVID. Netosis在糖尿病和长期新冠肺炎之间建立了联系。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-04-01 Epub Date: 2023-10-19 DOI: 10.1152/physrev.00032.2023
Alain R Thierry
{"title":"NETosis creates a link between diabetes and Long COVID.","authors":"Alain R Thierry","doi":"10.1152/physrev.00032.2023","DOIUrl":"10.1152/physrev.00032.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"651-654"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49681334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. 间充质基质细胞用于改善急性心肌梗死后的心脏功能:时机问题。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-04-01 Epub Date: 2023-08-17 DOI: 10.1152/physrev.00009.2023
Stéphanie Barrère-Lemaire, Anne Vincent, Christian Jorgensen, Christophe Piot, Joël Nargeot, Farida Djouad
{"title":"Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing.","authors":"Stéphanie Barrère-Lemaire, Anne Vincent, Christian Jorgensen, Christophe Piot, Joël Nargeot, Farida Djouad","doi":"10.1152/physrev.00009.2023","DOIUrl":"10.1152/physrev.00009.2023","url":null,"abstract":"<p><p>Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"659-725"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10033541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. CD36作为心肌脂质代谢的看门人和代谢性疾病的治疗靶点。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-04-01 Epub Date: 2023-10-26 DOI: 10.1152/physrev.00011.2023
Jan F C Glatz, Lisa C Heather, Joost J F P Luiken
{"title":"CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease.","authors":"Jan F C Glatz, Lisa C Heather, Joost J F P Luiken","doi":"10.1152/physrev.00011.2023","DOIUrl":"10.1152/physrev.00011.2023","url":null,"abstract":"<p><p>The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H<sup>+</sup>-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"727-764"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50162630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信