Physiological reviews最新文献

筛选
英文 中文
Cannabinoid treatments in epilepsy and seizure disorders. 大麻素治疗癫痫和癫痫。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-04-01 Epub Date: 2023-10-26 DOI: 10.1152/physrev.00049.2021
Orrin Devinsky, Nicholas A Jones, Mark O Cunningham, B Ashan P Jayasekera, Sasha Devore, Benjamin J Whalley
{"title":"Cannabinoid treatments in epilepsy and seizure disorders.","authors":"Orrin Devinsky, Nicholas A Jones, Mark O Cunningham, B Ashan P Jayasekera, Sasha Devore, Benjamin J Whalley","doi":"10.1152/physrev.00049.2021","DOIUrl":"10.1152/physrev.00049.2021","url":null,"abstract":"<p><p>Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ<sup>9</sup>-tetrahydrocannabinol (Δ<sup>9</sup>-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"591-649"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50162629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is Notch1 a neglected vascular mechanosensor? Davis等人的社论。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-04-01 Epub Date: 2023-11-09 DOI: 10.1152/physrev.00033.2023
Brooke R Shepley, Anthony R Bain
{"title":"Is Notch1 a neglected vascular mechanosensor?","authors":"Brooke R Shepley, Anthony R Bain","doi":"10.1152/physrev.00033.2023","DOIUrl":"10.1152/physrev.00033.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"655-658"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphodiesterase in heart and vessels: from physiology to diseases. 心脏和血管中的磷酸二酯酶——从生理学到疾病。
IF 29.9 1区 医学
Physiological reviews Pub Date : 2024-04-01 Epub Date: 2023-11-16 DOI: 10.1152/physrev.00015.2023
Qin Fu, Ying Wang, Chen Yan, Yang K Xiang
{"title":"Phosphodiesterase in heart and vessels: from physiology to diseases.","authors":"Qin Fu, Ying Wang, Chen Yan, Yang K Xiang","doi":"10.1152/physrev.00015.2023","DOIUrl":"10.1152/physrev.00015.2023","url":null,"abstract":"<p><p>Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"765-834"},"PeriodicalIF":29.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136398904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. 微生物群:在免疫稳态和呼吸道炎症中起着不可或缺的作用。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-04-01 Epub Date: 2023-12-07 DOI: 10.1152/physrev.00020.2023
Olaf Perdijk, Rossana Azzoni, Benjamin J Marsland
{"title":"The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract.","authors":"Olaf Perdijk, Rossana Azzoni, Benjamin J Marsland","doi":"10.1152/physrev.00020.2023","DOIUrl":"10.1152/physrev.00020.2023","url":null,"abstract":"<p><p>The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"835-879"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138499247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lung endothelium, tau, and amyloids in health and disease. 健康和疾病中的肺内皮、tau 和淀粉样蛋白。
IF 29.9 1区 医学
Physiological reviews Pub Date : 2024-04-01 Epub Date: 2023-08-10 DOI: 10.1152/physrev.00006.2023
Ron Balczon, Mike T Lin, Sarah Voth, Amy R Nelson, Jonas C Schupp, Brant M Wagener, Jean-Francois Pittet, Troy Stevens
{"title":"Lung endothelium, tau, and amyloids in health and disease.","authors":"Ron Balczon, Mike T Lin, Sarah Voth, Amy R Nelson, Jonas C Schupp, Brant M Wagener, Jean-Francois Pittet, Troy Stevens","doi":"10.1152/physrev.00006.2023","DOIUrl":"10.1152/physrev.00006.2023","url":null,"abstract":"<p><p>Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"533-587"},"PeriodicalIF":29.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9957916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution, biomechanics, and neurobiology converge to explain selective finger motor control 进化论、生物力学和神经生物学共同解释手指运动控制的选择性
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-02-22 DOI: 10.1152/physrev.00030.2023
Jing Xu, Firas Mawase, Marc H. Schieber
{"title":"Evolution, biomechanics, and neurobiology converge to explain selective finger motor control","authors":"Jing Xu, Firas Mawase, Marc H. Schieber","doi":"10.1152/physrev.00030.2023","DOIUrl":"https://doi.org/10.1152/physrev.00030.2023","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"259 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Community-acquired bacterial coinfections and COVID-19. 社区——获得性细菌感染和新冠肺炎。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-01-01 Epub Date: 2023-08-17 DOI: 10.1152/physrev.00010.2023
Michael John Patton, Amit Gaggar, Matthew Might, Nathaniel Erdmann, Carlos J Orihuela, Kevin S Harrod
{"title":"Community-acquired bacterial coinfections and COVID-19.","authors":"Michael John Patton,&nbsp;Amit Gaggar,&nbsp;Matthew Might,&nbsp;Nathaniel Erdmann,&nbsp;Carlos J Orihuela,&nbsp;Kevin S Harrod","doi":"10.1152/physrev.00010.2023","DOIUrl":"10.1152/physrev.00010.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1-21"},"PeriodicalIF":33.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10016545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. 组织转谷氨酰胺酶:健康和疾病中的多功能和多位点调节因子。
IF 33.6 1区 医学
Physiological reviews Pub Date : 2024-01-01 Epub Date: 2023-09-15 DOI: 10.1152/physrev.00003.2023
Zhouzhou Yao, Yuhua Fan, Lizhen Lin, Rodney E Kellems, Yang Xia
{"title":"Tissue transglutaminase: a multifunctional and multisite regulator in health and disease.","authors":"Zhouzhou Yao, Yuhua Fan, Lizhen Lin, Rodney E Kellems, Yang Xia","doi":"10.1152/physrev.00003.2023","DOIUrl":"10.1152/physrev.00003.2023","url":null,"abstract":"<p><p>Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"281-325"},"PeriodicalIF":33.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10247153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. 糖皮质激素,它们的用途,性畸形和疾病:新概念,机制和发现。
IF 29.9 1区 医学
Physiological reviews Pub Date : 2024-01-01 Epub Date: 2023-09-21 DOI: 10.1152/physrev.00021.2023
Genesee J Martinez, Malik Appleton, Zachary A Kipp, Analia S Loria, Booki Min, Terry D Hinds
{"title":"Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries.","authors":"Genesee J Martinez, Malik Appleton, Zachary A Kipp, Analia S Loria, Booki Min, Terry D Hinds","doi":"10.1152/physrev.00021.2023","DOIUrl":"10.1152/physrev.00021.2023","url":null,"abstract":"<p><p>The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"473-532"},"PeriodicalIF":29.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41125524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms. 血压调节与高血压的性别差异:肾脏、血液动力学和激素机制。
IF 29.9 1区 医学
Physiological reviews Pub Date : 2024-01-01 Epub Date: 2023-07-21 DOI: 10.1152/physrev.00041.2022
Erika R Drury, Jing Wu, Joseph C Gigliotti, Thu H Le
{"title":"Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms.","authors":"Erika R Drury, Jing Wu, Joseph C Gigliotti, Thu H Le","doi":"10.1152/physrev.00041.2022","DOIUrl":"10.1152/physrev.00041.2022","url":null,"abstract":"<p><p>The teleology of sex differences has been argued since at least as early as Aristotle's controversial <i>Generation of Animals</i> more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question \"why are the sexes different\" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question \"how are the sexes different\" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"199-251"},"PeriodicalIF":29.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281816/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9867092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信