Plant Cell最新文献

筛选
英文 中文
EXECUTER1 and singlet oxygen signaling: A reassessment of nuclear activity. EXECUTER1 和单线态氧信号:核活动的重新评估
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae296
Kaiwei Liu, Huan Zhao, Keun Pyo Lee, Qing Yu, Minghui Di, Liangsheng Wang, Chanhong Kim
{"title":"EXECUTER1 and singlet oxygen signaling: A reassessment of nuclear activity.","authors":"Kaiwei Liu, Huan Zhao, Keun Pyo Lee, Qing Yu, Minghui Di, Liangsheng Wang, Chanhong Kim","doi":"10.1093/plcell/koae296","DOIUrl":"10.1093/plcell/koae296","url":null,"abstract":"<p><p>Chloroplasts are recognized as environmental sensors, capable of translating environmental fluctuations into diverse signals to communicate with the nucleus. Among the reactive oxygen species produced in chloroplasts, singlet oxygen (1O2) has been extensively studied due to its dual roles, encompassing both damage and signaling activities, and the availability of conditional mutants overproducing 1O2 in chloroplasts. In particular, investigating the Arabidopsis (Arabidopsis thaliana) mutant known as fluorescent (flu) has led to the discovery of EXECUTER1 (EX1), a plastid 1O2 sensor residing in the grana margin of the thylakoid membrane. 1O2-triggered EX1 degradation is critical for the induction of 1O2-responsive nuclear genes (SOrNGs). However, a recent study showed that EX1 relocates from chloroplasts to the nucleus upon 1O2 release, where it interacts with WRKY18 and WRKY40 (WRKY18/40) transcription factors to regulate SOrNG expression. In this study, we challenge this assertion. Our confocal microscopy analysis and subcellular fractionation assays demonstrate that EX1 does not accumulate in the nucleus. While EX1 appears in nuclear fractions, subsequent thermolysin treatment assays indicate that it adheres to the outer nuclear region rather than localizing inside the nucleus. Furthermore, luciferase complementation imaging and yeast 2-hybrid assays reveal that EX1 does not interact with nuclear WRKY18/40. Consequently, our study refines the current model of 1O2 signaling by ruling out the nuclear relocation of intact EX1 as a means of communication between the chloroplast and nucleus.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new light on the UFO mystery: Zmufo1 encodes a nuclear protein that modulates redox levels and epigenetic status during basal endosperm differentiation in maize. UFO之谜的新发现Zmufo1 编码一种核蛋白,它能在玉米基部胚乳分化过程中调节氧化还原水平和表观遗传状态。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae307
Nicolas M Doll
{"title":"A new light on the UFO mystery: Zmufo1 encodes a nuclear protein that modulates redox levels and epigenetic status during basal endosperm differentiation in maize.","authors":"Nicolas M Doll","doi":"10.1093/plcell/koae307","DOIUrl":"10.1093/plcell/koae307","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: The MaNAP1-MaMADS1 transcription factor module mediates ethylene-regulated peel softening and ripening in banana. 修正:MaNAP1-MaMADS1转录因子模块介导乙烯调控的香蕉果皮软化和成熟。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae319
{"title":"Correction to: The MaNAP1-MaMADS1 transcription factor module mediates ethylene-regulated peel softening and ripening in banana.","authors":"","doi":"10.1093/plcell/koae319","DOIUrl":"https://doi.org/10.1093/plcell/koae319","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From the archives: Roles of microtubule-associated proteins in organelle movement, tip growth, and phragmoplast architecture. 来自档案:微管相关蛋白在细胞器运动、尖端生长和膜质体结构中的作用。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae331
Renuka Kolli
{"title":"From the archives: Roles of microtubule-associated proteins in organelle movement, tip growth, and phragmoplast architecture.","authors":"Renuka Kolli","doi":"10.1093/plcell/koae331","DOIUrl":"10.1093/plcell/koae331","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fixing PSII: Membrane fluidity facilitates FtsH functions. 固定光系统II:膜流动性促进FtsH功能。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koaf003
Nora Flynn
{"title":"Fixing PSII: Membrane fluidity facilitates FtsH functions.","authors":"Nora Flynn","doi":"10.1093/plcell/koaf003","DOIUrl":"10.1093/plcell/koaf003","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The rice microRNA159-SPOROCYTELESS EAR2 module regulates starch biosynthesis during pollen development and maintains male fertility. 水稻microRNA159-SPOROCYTELESS EAR2模块调控花粉发育过程中的淀粉生物合成,维持雄性育性。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae324
Jinyuan Tao, Wenwen Kong, Weigui Luo, Li Wang, Xing Dai, Xiaojing Lin, Haijiao Dong, Xiaoyu Yang, Beixin Mo, Xuemei Chen, Yu Yu
{"title":"The rice microRNA159-SPOROCYTELESS EAR2 module regulates starch biosynthesis during pollen development and maintains male fertility.","authors":"Jinyuan Tao, Wenwen Kong, Weigui Luo, Li Wang, Xing Dai, Xiaojing Lin, Haijiao Dong, Xiaoyu Yang, Beixin Mo, Xuemei Chen, Yu Yu","doi":"10.1093/plcell/koae324","DOIUrl":"10.1093/plcell/koae324","url":null,"abstract":"<p><p>Starch is an indispensable energy reserve for pollen and failure of starch biosynthesis in pollen leads to male sterility in flowering crops. Nonetheless, the regulatory mechanisms underlying starch biosynthesis in rice (Oryza sativa) pollen remain unclear. Here, we identified a target of the microRNA OsmiR159, SPOROCYTELESS ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-ASSOCIATED AMPHIPHILIC-REPRESSION 2 (OsSPEAR2). OsSPEAR2 is predominantly expressed in mature pollen and OsSPEAR2 possesses transcriptional repressor activity and localizes in the nucleus. Disruption of OsSPEAR2 results in severely shrunken pollen grains and male sterility. OsSPEAR2 interacts with multiple OsTCPs, including OsTCP14. OsTCP14 is a target of OsmiR319 and a knockout mutation in OsTCP14 partially rescues the defective pollen phenotype of Osspear2. In addition, transcriptome analyses revealed significant downregulation of numerous genes associated with carbohydrate metabolism, specifically in Osspear2 anthers, including several genes critical for starch biosynthesis. Moreover, OsTCP14 directly represses the expression of the essential starch biosynthesis gene OsUGP2; however, this repression could be alleviated by OsSPEAR2. Noteworthily, embryophyte-specific SPEAR2 and SPOROCYTELESS were also identified as miR159 targets involved in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana), indicating that the miR159-SPEAR regulatory module may be conserved among embryophytes. Collectively, our findings reveal OsmiR159-OsSPEAR2-OsTCP14-OsUGP2 as a regulatory cascade that modulates starch biosynthesis during pollen development in rice.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embracing a new phase: Ribosome binding promotes phasiRNA biogenesis. 迎接新阶段:核糖体结合促进了 phasiRNA 的生物生成。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae298
Michael Busche
{"title":"Embracing a new phase: Ribosome binding promotes phasiRNA biogenesis.","authors":"Michael Busche","doi":"10.1093/plcell/koae298","DOIUrl":"10.1093/plcell/koae298","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VvFHY3 links auxin and endoplasmic reticulum stress to regulate grape anthocyanin biosynthesis at high temperatures. VvFHY3 将叶绿素和内质网应激联系起来,调节高温下葡萄花青素的生物合成。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae303
Yanzhao Sun, Yanyan Zheng, Wenyuan Wang, Heng Yao, Zain Ali, Mengwei Xiao, Zhaodong Ma, Jingjing Li, Wenfei Zhou, Jing Cui, Kun Yu, Yang Liu
{"title":"VvFHY3 links auxin and endoplasmic reticulum stress to regulate grape anthocyanin biosynthesis at high temperatures.","authors":"Yanzhao Sun, Yanyan Zheng, Wenyuan Wang, Heng Yao, Zain Ali, Mengwei Xiao, Zhaodong Ma, Jingjing Li, Wenfei Zhou, Jing Cui, Kun Yu, Yang Liu","doi":"10.1093/plcell/koae303","DOIUrl":"10.1093/plcell/koae303","url":null,"abstract":"<p><p>Anthocyanins affect quality in fruits such as grape (Vitis vinifera). High temperatures reduce anthocyanin levels by suppressing the expression of anthocyanin biosynthesis genes and decreasing the biosynthetic rate. However, the regulatory mechanisms that coordinate these 2 processes remain largely unknown. In this study, we demonstrate that high-temperature-mediated inhibition of anthocyanin biosynthesis in grape berries depends on the auxin and endoplasmic reticulum (ER) stress pathways. Inactivation of these pathways restores anthocyanin accumulation under high temperatures. We identified and characterized FAR-RED ELONGATED HYPOCOTYL3 (FHY3), a high-temperature-modulated transcription factor that activates multiple anthocyanin biosynthesis genes by binding to their promoters. The auxin response factor VvARF3 interacts with VvFHY3 and represses its transactivation activity, antagonizing VvFHY3-induced anthocyanin biosynthesis. Additionally, we found that the ER stress sensor VvbZIP17 represses anthocyanin biosynthesis. VvFHY3 suppresses VvbZIP17 activity by directly binding to the VvbZIP17 promoter to repress its transcription and by physically interacting with VvbZIP17 to block its DNA binding ability. Furthermore, AUXIN RESPONSE FACTOR 3 (ARF3) interferes with the VvFHY3-VvbZIP17 interaction, releasing VvbZIP17 to activate the unfolded protein response and further suppress anthocyanin production. Our results unravel the VvARF3-VvFHY3-VvbZIP17 regulatory module, which links the auxin and ER stress pathways to coordinately repress anthocyanin structural gene expression and biosynthesis under high-temperature stress.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koaf007
Qianyu Yue, Yinpeng Xie, Xinyue Yang, Yuxin Zhang, Zhongxing Li, Yunxiao Liu, Pengda Cheng, Ruiping Zhang, Yue Yu, Xiaofei Wang, Liao Liao, Yuepeng Han, Tao Zhao, Xuewei Li, Hengtao Zhang, Fengwang Ma, Qingmei Guan
{"title":"An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.","authors":"Qianyu Yue, Yinpeng Xie, Xinyue Yang, Yuxin Zhang, Zhongxing Li, Yunxiao Liu, Pengda Cheng, Ruiping Zhang, Yue Yu, Xiaofei Wang, Liao Liao, Yuepeng Han, Tao Zhao, Xuewei Li, Hengtao Zhang, Fengwang Ma, Qingmei Guan","doi":"10.1093/plcell/koaf007","DOIUrl":"10.1093/plcell/koaf007","url":null,"abstract":"<p><p>A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.). MdNAC18.1 activated the transcription of genes related to fruit softening (Polygalacturonase, PG) and ethylene biosynthesis (1-aminocyclopropane-1-carboxylic acid synthase, ACS), thereby promoting fruit ripening of apple and tomato (Solanum lycopersicum). There were two single-nucleotide polymorphisms (SNP-1,545 and SNP-2,002) and a 58-bp insertion-deletion (InDel-58) in the promoter region of MdNAC18.1. Among these, InDel-58 serves as the main effector in activating the expression of MdNAC18.1 and driving fruit ripening. InDel-58 determines the binding affinity of the class D MADS-box protein AGAMOUS-LIKE 11 (MdAGL11), a negative regulator of fruit ripening. The InDel-58 deletion in the early-ripening genotype reduces the inhibitory effect of MdAGL11 on MdNAC18.1. Moreover, MdNAC18.1 and its homologous genes originated from a common ancestor across 61 angiosperms, with functional diversification attributed to tandem replications that occurred in basal angiosperms. In summary, our study revealed how a set of natural variations influence fruit ripening and explored the functional diversification of MdNAC18.1 during evolution.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tackling vascular wilt disease: A signaling cascade to strengthen the plant cell wall. 应对维管束枯萎病:强化植物细胞壁的信号级联
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae299
Shanice S Webster
{"title":"Tackling vascular wilt disease: A signaling cascade to strengthen the plant cell wall.","authors":"Shanice S Webster","doi":"10.1093/plcell/koae299","DOIUrl":"10.1093/plcell/koae299","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信