Plant Cell最新文献

筛选
英文 中文
The DENSE AND ERECT PANICLE1-GRAIN NUMBER ASSOCIATED module enhances rice yield by repressing CYTOKININ OXIDASE 2 expression. 结实直立的穗粒数相关模块通过抑制细胞分裂素氧化酶2的表达而提高水稻产量。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae309
Jinhui Zhang, Qibing Lin, Xin Wang, Jiale Shao, Yulong Ren, Xin Liu, Miao Feng, Shuai Li, Qi Sun, Sheng Luo, Bojuan Liu, Xinxin Xing, Yanqi Chang, Zhijun Cheng, Jianmin Wan
{"title":"The DENSE AND ERECT PANICLE1-GRAIN NUMBER ASSOCIATED module enhances rice yield by repressing CYTOKININ OXIDASE 2 expression.","authors":"Jinhui Zhang, Qibing Lin, Xin Wang, Jiale Shao, Yulong Ren, Xin Liu, Miao Feng, Shuai Li, Qi Sun, Sheng Luo, Bojuan Liu, Xinxin Xing, Yanqi Chang, Zhijun Cheng, Jianmin Wan","doi":"10.1093/plcell/koae309","DOIUrl":"10.1093/plcell/koae309","url":null,"abstract":"<p><p>The phytohormone cytokinin (CK) positively regulates the activity of the inflorescence meristem (IM). Cytokinin oxidase 2/Grain number 1a (OsCKX2/Gn1a)-mediated degradation of CK in rice (Oryza sativa L.) negatively regulates panicle grain number, whereas DENSE AND ERECT PANICLE 1 (DEP1) positively regulates grain number per panicle (GNP). However, the detailed regulatory mechanism between DEP1 and OsCKX2 remains elusive. Here, we report the GRAS (GIBBERELLIN ACID INSENSITIVE, REPRESSOR OF GA1, and SCARECROW) transcription factor GRAIN NUMBER ASSOCIATED (GNA), previously thought to be involved in the Brassinosteroids (BRs) signaling pathway, directly inhibits OsCKX2 expression in the IM through a DEP1-GNA regulatory module. Overexpressing GNA leads to increased CK levels and consequently higher branch number, GNP, and yield. Both DEP1 and dep1 enhance the inhibitory effect of GNA on OsCKX2 expression through interacting with GNA. GNA promotes the translocation of DEP1 to the nucleus, while the gain-of-function mutant dep1 translocates into the nucleus in the absence of GNA. Our findings provide insight into the regulatory mechanism underlying OsCKX2 and a strategy to improve rice yield.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorylation of the transcription factor OsNAC29 by OsMAPK3 activates diterpenoid genes to promote rice immunity. OsMAPK3磷酸化转录因子OsNAC29激活二萜类基因,促进水稻免疫。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae320
Ling Lu, Jianbo Fang, Na Xia, Jing Zhang, Zhijuan Diao, Xun Wang, Yan Liu, Dingzhong Tang, Shengping Li
{"title":"Phosphorylation of the transcription factor OsNAC29 by OsMAPK3 activates diterpenoid genes to promote rice immunity.","authors":"Ling Lu, Jianbo Fang, Na Xia, Jing Zhang, Zhijuan Diao, Xun Wang, Yan Liu, Dingzhong Tang, Shengping Li","doi":"10.1093/plcell/koae320","DOIUrl":"10.1093/plcell/koae320","url":null,"abstract":"<p><p>Well-conserved mitogen-activated protein kinase (MAPK) cascades are essential for orchestrating of a wide range of cellular processes in plants, including defense responses against pathogen attack. NAC transcription factors (TFs) play important roles in plant immunity, but their targets and how they are regulated remain largely unknown. Here, we identified the TF OsNAC29 as a key component of a MAPK signaling pathway involved in rice (Oryza sativa) disease resistance. OsNAC29 binds directly to CACGTG motifs in the promoters of OsTPS28 and OsCYP71Z2, which are crucial for the biosynthesis of the phytoalexin 5,10-diketo-casbene and consequently rice blast resistance. OsNAC29 positively regulates rice blast resistance by promoting the expression of of OsTPS28 and OsCYP71Z2, and the function of OsNAC29 is genetically dependent on OsCYP71Z2 and OsTPS28. Furthermore, OsNAC29 interacts with OsRACK1A and OsMAPK3/6 to form an immune complex; OsMAPK3 phosphorylates OsNAC29 at Thr304 to prevent its proteasome-mediated degradation and promote its function against rice blast fungus. Phosphorylation of OsNAC29 at Thr304 is induced upon Magnaporthe oryzae infection and chitin treatment. Our data demonstrate the positive role of the OsMAPK3-OsNAC29-OsTPS28/OsCYP71Z2 module in rice blast resistance, providing insights into the molecular regulatory network and fine-tuning of NAC TFs in rice immunity.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Species- and organ-specific contribution of peroxisomal cinnamate:CoA ligases to benzoic and salicylic acid biosynthesis. 肉桂酸过氧化物酶体:辅酶a连接酶对苯甲酸和水杨酸生物合成的物种和器官特异性贡献。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae329
Yukang Wang, Huiying Miao, Jiehua Qiu, Menghui Liu, Gaochen Jin, Wenxuan Zhang, Shuyan Song, Pengxiang Fan, Xiufang Xin, Jianping Hu, Ran Li, Ronghui Pan
{"title":"Species- and organ-specific contribution of peroxisomal cinnamate:CoA ligases to benzoic and salicylic acid biosynthesis.","authors":"Yukang Wang, Huiying Miao, Jiehua Qiu, Menghui Liu, Gaochen Jin, Wenxuan Zhang, Shuyan Song, Pengxiang Fan, Xiufang Xin, Jianping Hu, Ran Li, Ronghui Pan","doi":"10.1093/plcell/koae329","DOIUrl":"10.1093/plcell/koae329","url":null,"abstract":"<p><p>Salicylic acid (SA) is a prominent defense hormone whose basal level, organ-specific accumulation, and physiological role vary widely among plant species. Of the 2 known pathways of plant SA biosynthesis, the phenylalanine ammonia lyase (PAL) pathway is more ancient and universal but its biosynthetic and physiological roles in diverse plant species remain unclear. Studies in which the PAL pathway is specifically or completely inhibited, as well as a direct comparison of diverse species and different organs within the same species, are needed. To this end, we analyzed the PAL pathway in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), 2 distantly related model plants whose basal SA levels and distributions differ tremendously at the organism and tissue levels. Based on our recent identification of the rice peroxisomal cinnamate:CoA ligases (CNLs), we identified 2 peroxisomal CNLs from Arabidopsis and showed CNL as the most functionally specific enzyme among the known enzymes of the PAL pathway. We then revealed the species- and organ-specific contribution of the PAL pathway to benzoic and salicylic acid biosynthesis and clarified its physiological importance in rice and Arabidopsis. Our findings highlight the necessity to consider species and organ types in future SA-related studies and may help to breed new disease-resistant crops.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The time is ripe: Natural variability of MdNAC18.1 promoter plays a major role in fruit ripening.
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-23 DOI: 10.1093/plcell/koaf004
Christian Damian Lorenzo
{"title":"The time is ripe: Natural variability of MdNAC18.1 promoter plays a major role in fruit ripening.","authors":"Christian Damian Lorenzo","doi":"10.1093/plcell/koaf004","DOIUrl":"10.1093/plcell/koaf004","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boom or burst: Integration of CERK1 activation by OXI1 sheds light on ROS signalling during PTI. 沸腾还是爆发?OXI1 对 CERK1 激活的整合揭示了 PTI 期间的 ROS 信号。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-12-04 DOI: 10.1093/plcell/koae314
Rory Osborne
{"title":"Boom or burst: Integration of CERK1 activation by OXI1 sheds light on ROS signalling during PTI.","authors":"Rory Osborne","doi":"10.1093/plcell/koae314","DOIUrl":"https://doi.org/10.1093/plcell/koae314","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142829808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EARLY NODULIN93 acts via cytochrome c oxidase to alter respiratory ATP production and root growth in plants. 早期 NODULIN93 通过细胞色素 c 氧化酶改变植物呼吸 ATP 的产生和根的生长。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-11-02 DOI: 10.1093/plcell/koae242
Chun Pong Lee, Xuyen H Le, Ryan M R Gawryluk, José A Casaretto, Steven J Rothstein, A Harvey Millar
{"title":"EARLY NODULIN93 acts via cytochrome c oxidase to alter respiratory ATP production and root growth in plants.","authors":"Chun Pong Lee, Xuyen H Le, Ryan M R Gawryluk, José A Casaretto, Steven J Rothstein, A Harvey Millar","doi":"10.1093/plcell/koae242","DOIUrl":"10.1093/plcell/koae242","url":null,"abstract":"<p><p>EARLY NODULIN 93 (ENOD93) has been genetically associated with biological nitrogen fixation in legumes and nitrogen use efficiency in cereals, but its precise function is unknown. We show that hidden Markov models define ENOD93 as a homolog of the N-terminal domain of RESPIRATORY SUPERCOMPLEX FACTOR 2 (RCF2). RCF2 regulates cytochrome oxidase (CIV), influencing the generation of a mitochondrial proton motive force in yeast (Saccharomyces cerevisiae). Knockout of ENOD93 in Arabidopsis (Arabidopsis thaliana) causes a short root phenotype and early flowering. ENOD93 is associated with a protein complex the size of CIV in mitochondria, but neither CIV abundance nor its activity changed in ruptured organelles of enod93. However, a progressive loss of ADP-dependent respiration rate was observed in intact enod93 mitochondria, which could be recovered in complemented lines. Mitochondrial membrane potential was higher in enod93 in a CIV-dependent manner, but ATP synthesis and ADP depletion rates progressively decreased. The respiration rate of whole enod93 seedlings was elevated, and root ADP content was nearly double that in wild type without a change in ATP content. We propose that ENOD93 and HYPOXIA-INDUCED GENE DOMAIN 2 (HIGD2) are the functional equivalent of yeast RCF2 but have remained undiscovered in many eukaryotic lineages because they are encoded by 2 distinct genes.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4716-4731"},"PeriodicalIF":10.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Will the real Robert Hooke please stand up? 请真正的罗伯特-胡克站起来好吗?
IF 1 1区 生物学
Plant Cell Pub Date : 2024-11-02 DOI: 10.1093/plcell/koae244
Winfried S Peters
{"title":"Will the real Robert Hooke please stand up?","authors":"Winfried S Peters","doi":"10.1093/plcell/koae244","DOIUrl":"10.1093/plcell/koae244","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4680-4682"},"PeriodicalIF":10.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530768/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The strigolactone receptor DWARF14 regulates flowering time in Arabidopsis. 绞股蓝内酯受体 DWARF14 调节拟南芥的开花时间。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-11-02 DOI: 10.1093/plcell/koae248
Jinrui Bai, Xi Lei, Jinlan Liu, Yi Huang, Lumei Bi, Yuehua Wang, Jindong Li, Haiyang Yu, Shixiang Yao, Li Chen, Bart J Janssen, Kimberley C Snowden, Meng Zhang, Ruifeng Yao
{"title":"The strigolactone receptor DWARF14 regulates flowering time in Arabidopsis.","authors":"Jinrui Bai, Xi Lei, Jinlan Liu, Yi Huang, Lumei Bi, Yuehua Wang, Jindong Li, Haiyang Yu, Shixiang Yao, Li Chen, Bart J Janssen, Kimberley C Snowden, Meng Zhang, Ruifeng Yao","doi":"10.1093/plcell/koae248","DOIUrl":"10.1093/plcell/koae248","url":null,"abstract":"<p><p>Multiple plant hormones, including strigolactone (SL), play key roles in regulating flowering time. The Arabidopsis (Arabidopsis thaliana) DWARF14 (AtD14) receptor perceives SL and recruits F-box protein MORE AXILLARY GROWTH2 (MAX2) and the SUPPRESSOR OF MAX2-LIKE (SMXL) family proteins. These interactions lead to the degradation of the SMXL repressor proteins, thereby regulating shoot branching, leaf shape, and other developmental processes. However, the molecular mechanism by which SL regulates plant flowering remains elusive. Here, we demonstrate that intact strigolactone biosynthesis and signaling pathways are essential for normal flowering in Arabidopsis. Loss-of-function mutants in both SL biosynthesis (max3) and signaling (Atd14 and max2) pathways display earlier flowering, whereas the repressor triple mutant smxl6/7/8 (s678) exhibits the opposite phenotype. Retention of AtD14 in the cytoplasm leads to its inability to repress flowering. Moreover, we show that nuclear-localized AtD14 employs dual strategies to enhance the function of the AP2 transcription factor TARGET OF EAT1 (TOE1). AtD14 directly binds to TOE1 in an SL-dependent manner and stabilizes it. In addition, AtD14-mediated degradation of SMXL7 releases TOE1 from the repressor protein, allowing it to bind to and inhibit the FLOWERING LOCUS T (FT) promoter. This results in reduced FT transcription and delayed flowering. In summary, AtD14 perception of SL enables the transcription factor TOE1 to repress flowering, providing insights into hormonal control of plant flowering.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4752-4767"},"PeriodicalIF":10.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530773/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of biological and information technologies to enhance plant autoluminescence. 整合生物和信息技术,提高植物自发光能力。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-11-02 DOI: 10.1093/plcell/koae236
Jieyu Ge, Xuye Lang, Jiayi Ji, Chengyi Qu, He Qiao, Jingling Zhong, Daren Luo, Jin Hu, Hongyu Chen, Shun Wang, Tiange Wang, Shiquan Li, Wei Li, Peng Zheng, Jiming Xu, Hao Du
{"title":"Integration of biological and information technologies to enhance plant autoluminescence.","authors":"Jieyu Ge, Xuye Lang, Jiayi Ji, Chengyi Qu, He Qiao, Jingling Zhong, Daren Luo, Jin Hu, Hongyu Chen, Shun Wang, Tiange Wang, Shiquan Li, Wei Li, Peng Zheng, Jiming Xu, Hao Du","doi":"10.1093/plcell/koae236","DOIUrl":"10.1093/plcell/koae236","url":null,"abstract":"<p><p>Autoluminescent plants have been genetically modified to express the fungal bioluminescence pathway (FBP). However, a bottleneck in precursor production has limited the brightness of these luminescent plants. Here, we demonstrate the effectiveness of utilizing a computational model to guide a multiplex five-gene-silencing strategy by an artificial microRNA array to enhance caffeic acid (CA) and hispidin levels in plants. By combining loss-of-function-directed metabolic flux with a tyrosine-derived CA pathway, we achieved substantially enhanced bioluminescence levels. We successfully generated eFBP2 plants that emit considerably brighter bioluminescence for naked-eye reading by integrating all validated DNA modules. Our analysis revealed that the luminous energy conversion efficiency of the eFBP2 plants is currently very low, suggesting that luminescence intensity can be improved in future iterations. These findings highlight the potential to enhance plant luminescence through the integration of biological and information technologies.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4703-4715"},"PeriodicalIF":10.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530770/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small protein, big effects: ENOD93 alters mitochondrial ATP production to favor nitrogen assimilation in plants. 小蛋白,大作用:ENOD93 改变线粒体 ATP 的产生,有利于植物的氮同化。
IF 1 1区 生物学
Plant Cell Pub Date : 2024-11-02 DOI: 10.1093/plcell/koae247
Renuka Kolli
{"title":"Small protein, big effects: ENOD93 alters mitochondrial ATP production to favor nitrogen assimilation in plants.","authors":"Renuka Kolli","doi":"10.1093/plcell/koae247","DOIUrl":"10.1093/plcell/koae247","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4678-4679"},"PeriodicalIF":10.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信