Plant CellPub Date : 2025-07-01DOI: 10.1093/plcell/koaf160
Nitin Uttam Kamble
{"title":"Tiny seeds, big decisions: Jasmonate-mediated regulation of seed size in Arabidopsis via the SOD7-KLU module.","authors":"Nitin Uttam Kamble","doi":"10.1093/plcell/koaf160","DOIUrl":"10.1093/plcell/koaf160","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144294800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2025-07-01DOI: 10.1093/plcell/koaf159
Pei Qin Ng
{"title":"Emergence and evolution of canonical microRNAs: A case study in Arabidopsis halleri and A. lyrata.","authors":"Pei Qin Ng","doi":"10.1093/plcell/koaf159","DOIUrl":"10.1093/plcell/koaf159","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144310310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2025-07-01DOI: 10.1093/plcell/koaf157
Laura Arribas-Hernández
{"title":"Chromatin insulators: Good fences that make good neighbors.","authors":"Laura Arribas-Hernández","doi":"10.1093/plcell/koaf157","DOIUrl":"10.1093/plcell/koaf157","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144294799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The multifunctional ascorbate peroxidase MoApx1 secreted by Magnaporthe oryzae mediates the suppression of rice immunity.","authors":"Muxing Liu, Ziqian Guo, Jiexiong Hu, Yuke Chen, Fang Chen, Weizhong Chen, Wenya Wang, Boyang Ye, Zhixiang Yang, Gang Li, Xinyu Liu, Haifeng Zhang, Ping Wang, Zhengguang Zhang","doi":"10.1093/plcell/koaf146","DOIUrl":"10.1093/plcell/koaf146","url":null,"abstract":"<p><p>Fungi secrete effector proteins, including extracellular redox enzymes, to inhibit host immunity. Redox enzymes have been hypothesized to inhibit host reactive oxygen species (ROS); however, how they suppress host immunity remains unknown. We characterized an extracellular ascorbate peroxidase (MoApx1) that is secreted into rice chloroplasts by the rice blast fungus Magnaporthe oryzae. MoApx1 displays multifunctional capabilities that significantly contribute to fungal virulence. Firstly, MoApx1 neutralizes host-derived H2O2 within the chloroplast through its peroxidase activity, thereby inhibiting chloroplast ROS (cROS)-mediated defense responses. Secondly, MoApx1 targets the photosystem I subunit OsPsaD, disrupting photosynthetic electron transport to further suppress cROS production. Most importantly, MoApx1 has evolved a fungal-specific starch-binding domain that binds host starch, inhibiting its degradation and disrupting the energy supply required for host resistance. Our findings underscore the importance of a novel multifaceted strategy, potentially widely employed by other fungal pathogens, in suppressing host immunity during host-microbe interactions.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144266960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2025-07-01DOI: 10.1093/plcell/koaf161
Li Liu, Xiangzhao Meng, Qinyi Ye, Da Guo, Yafei Zhao, Na Cao, Lihua Zheng, Fei Guo, Jiangqi Wen, Yiding Niu, Tao Wang, Jiangli Dong
{"title":"Regulation of the immunity-related VIK-APK-EDS1 pathway in Medicago for resistance to Phytophthora.","authors":"Li Liu, Xiangzhao Meng, Qinyi Ye, Da Guo, Yafei Zhao, Na Cao, Lihua Zheng, Fei Guo, Jiangqi Wen, Yiding Niu, Tao Wang, Jiangli Dong","doi":"10.1093/plcell/koaf161","DOIUrl":"10.1093/plcell/koaf161","url":null,"abstract":"<p><p>Root rot, induced by Phytophthora medicaginis, causes devastating damage to perennial alfalfa (Medicago sativa). However, the mechanism by which P. medicaginis infects Medicago remains elusive. Here, we identified the VASCULAR HIGHWAY 1-INTERACTING KINASE (VIK)-ANKYRIN PROTEIN KINASE (APK)-ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) pathway during P. medicaginis infection in Medicago truncatula. MtAPK is an autoimmune gene, and Mtapk-mediated autoimmunity depends on MtEDS1. P. medicaginis infection triggers MtVIK to phosphorylate Ser20 of MtAPK, enhancing the interaction between MtAPK and MtEDS1 in the cytoplasm and constraining the nuclear resistance of MtEDS1. Disease resistance could be enhanced not only by knocking out MtVIK but also by the Ser20Ala site mutation of MtAPK. Interestingly, we found that alfalfa germplasms with lower MsVIK expression after inoculation with P. medicaginis exhibited greater disease resistance. Furthermore, CRISPR/Cas9 editing of MsVIK mutants in alfalfa resulted in stronger disease resistance without growth or yield penalties. Taken together, VIK is a negative regulator of Medicago immunity and has significant potential for cultivating durable resistance in crops through genetic modification.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144507471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2025-07-01DOI: 10.1093/plcell/koaf152
Jiajun Wang
{"title":"Auxin meets BR: OsIAA7 teams up with OsGSK2 to destabilize OsBZR1 for rice seed size control.","authors":"Jiajun Wang","doi":"10.1093/plcell/koaf152","DOIUrl":"10.1093/plcell/koaf152","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144286132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2025-07-01DOI: 10.1093/plcell/koaf156
Min-Yao Jhu, Raphael Ledermann
{"title":"Division of labor in the nodule: Plant GluTRs fuel heme biosynthesis for symbiosis.","authors":"Min-Yao Jhu, Raphael Ledermann","doi":"10.1093/plcell/koaf156","DOIUrl":"10.1093/plcell/koaf156","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144286133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2025-07-01DOI: 10.1093/plcell/koaf153
Jiajun Wang
{"title":"Histone acetyltransferase GCN5 orchestrates flower development and is required for proper regulation of multiple key meristem and organ identity genes.","authors":"Jiajun Wang","doi":"10.1093/plcell/koaf153","DOIUrl":"10.1093/plcell/koaf153","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144286134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2025-07-01DOI: 10.1093/plcell/koaf154
Leonard Blaschek
{"title":"Root tip regeneration: Yet another feather in FERONIA's cap.","authors":"Leonard Blaschek","doi":"10.1093/plcell/koaf154","DOIUrl":"10.1093/plcell/koaf154","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144286155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}