Larissa C Laforest, Tuan-Anh M Nguyen, Gabriel Oliveira Matsumoto, Pavithra Ramachandria, Andre Chanderbali, Siva Rama Raju Kanumuri, Abhisheak Sharma, Christopher R McCurdy, Thu-Thuy T Dang, Satya Swathi Nadakuduti
{"title":"染色体水平上的细叶密天螺基因组揭示了螺霉吲哚生物碱的多样化和密天螺碱的生物合成。","authors":"Larissa C Laforest, Tuan-Anh M Nguyen, Gabriel Oliveira Matsumoto, Pavithra Ramachandria, Andre Chanderbali, Siva Rama Raju Kanumuri, Abhisheak Sharma, Christopher R McCurdy, Thu-Thuy T Dang, Satya Swathi Nadakuduti","doi":"10.1093/plcell/koaf207","DOIUrl":null,"url":null,"abstract":"<p><p>Monoterpene indole alkaloids (MIAs) found in the Rubiaceae have varied pharmaceutical uses. Spirooxindole alkaloids are a structural subtype of MIAs with a unique spiro[pyrrolidine-3,3'-oxindole] ring system. Despite their intriguing structures and potent bioactivities, the evolution and diversification of spirooxindole alkaloids remain poorly understood. We report a high-quality chromosome-scale genome assembly of Mitragyna parvifolia, a tree species of the Rubiaceae family that predominantly produces the spirooxindole alkaloid mitraphylline. Comparative genomics, including comprehensive synteny and phylogeny analyses across the MIA-producing order Gentianales revealed a whole-genome duplication event underlying the divergence of the Cinchonoideae alliance from the Coffeeae alliance, leading to diversification of MIA biosynthesis. Transcriptome analyses of young and mature leaves, stems, stipules, and roots integrated with MIA profiling and genome analyses revealed several candidates in the MIA biosynthetic pathway. Functional characterization of selected candidates led to the elucidation of the biosynthesis of the antiproliferative spirooxindole mitraphylline in M. parvifolia. These genomic and transcriptomic resources are invaluable to identify the evolutionary origins and diversification of MIAs and spirooxindole alkaloids.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419693/pdf/","citationCount":"0","resultStr":"{\"title\":\"A chromosome-level Mitragyna parvifolia genome unveils spirooxindole alkaloid diversification and mitraphylline biosynthesis.\",\"authors\":\"Larissa C Laforest, Tuan-Anh M Nguyen, Gabriel Oliveira Matsumoto, Pavithra Ramachandria, Andre Chanderbali, Siva Rama Raju Kanumuri, Abhisheak Sharma, Christopher R McCurdy, Thu-Thuy T Dang, Satya Swathi Nadakuduti\",\"doi\":\"10.1093/plcell/koaf207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monoterpene indole alkaloids (MIAs) found in the Rubiaceae have varied pharmaceutical uses. Spirooxindole alkaloids are a structural subtype of MIAs with a unique spiro[pyrrolidine-3,3'-oxindole] ring system. Despite their intriguing structures and potent bioactivities, the evolution and diversification of spirooxindole alkaloids remain poorly understood. We report a high-quality chromosome-scale genome assembly of Mitragyna parvifolia, a tree species of the Rubiaceae family that predominantly produces the spirooxindole alkaloid mitraphylline. Comparative genomics, including comprehensive synteny and phylogeny analyses across the MIA-producing order Gentianales revealed a whole-genome duplication event underlying the divergence of the Cinchonoideae alliance from the Coffeeae alliance, leading to diversification of MIA biosynthesis. Transcriptome analyses of young and mature leaves, stems, stipules, and roots integrated with MIA profiling and genome analyses revealed several candidates in the MIA biosynthetic pathway. Functional characterization of selected candidates led to the elucidation of the biosynthesis of the antiproliferative spirooxindole mitraphylline in M. parvifolia. These genomic and transcriptomic resources are invaluable to identify the evolutionary origins and diversification of MIAs and spirooxindole alkaloids.</p>\",\"PeriodicalId\":20186,\"journal\":{\"name\":\"Plant Cell\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koaf207\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koaf207","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A chromosome-level Mitragyna parvifolia genome unveils spirooxindole alkaloid diversification and mitraphylline biosynthesis.
Monoterpene indole alkaloids (MIAs) found in the Rubiaceae have varied pharmaceutical uses. Spirooxindole alkaloids are a structural subtype of MIAs with a unique spiro[pyrrolidine-3,3'-oxindole] ring system. Despite their intriguing structures and potent bioactivities, the evolution and diversification of spirooxindole alkaloids remain poorly understood. We report a high-quality chromosome-scale genome assembly of Mitragyna parvifolia, a tree species of the Rubiaceae family that predominantly produces the spirooxindole alkaloid mitraphylline. Comparative genomics, including comprehensive synteny and phylogeny analyses across the MIA-producing order Gentianales revealed a whole-genome duplication event underlying the divergence of the Cinchonoideae alliance from the Coffeeae alliance, leading to diversification of MIA biosynthesis. Transcriptome analyses of young and mature leaves, stems, stipules, and roots integrated with MIA profiling and genome analyses revealed several candidates in the MIA biosynthetic pathway. Functional characterization of selected candidates led to the elucidation of the biosynthesis of the antiproliferative spirooxindole mitraphylline in M. parvifolia. These genomic and transcriptomic resources are invaluable to identify the evolutionary origins and diversification of MIAs and spirooxindole alkaloids.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.