{"title":"两个AP2/ERF转录因子共同调控OsHAK1调控水稻钾和铯的吸收。","authors":"Mengqi Li, Weihong Li, Yang Zeng, Xiangbin Lu, Xuesong Li, Hongye Qu, Mian Gu, Huimin Feng, Xin-Yuan Huang, Ling Yu, Guohua Xu","doi":"10.1093/plcell/koaf205","DOIUrl":null,"url":null,"abstract":"<p><p>The Group-I alkali metals potassium (K) and cesium (Cs) serve as an essential nutrient and a harmful element, respectively. In rice (Oryza sativa), the high-affinity K+ (HAK) transporter OsHAK1 contributes to K+ and Cs+ acquisition; however, its regulatory mechanism remains unclear. Here, we report 2 OsHAK1 regulators belonging to the APETALA2/ethylene responsive factor family, designated POTASSIUM TRANSPORTER REGULATOR 1/2 (KTR1/2). Low K+ suppresses KTR1 but induces KTR2 expression. KTR1 inhibits and KTR2 enhances OsHAK1 expression. KTR1-knockout increases and KTR2-knockout decreases K+ and Cs+ uptake. Notably, KTR2 activates KTR1 expression, and the single mutation of KTR2 has a similar effect as the double mutation of KTR1 and KTR2 in impairing rice growth and grain yield. Furthermore, OsHAK1 inactivation in ktr1 mutants or KTR2-overexpression lines reduces Cs+ content to a similar level as in the oshak1 mutant. Enhancing KTR2 expression driven by its native promoter increases grain yield and K+ uptake. Variation in K+ content in grain is associated with differences of K+ content in soils where rice accessions show a distinct combination of KTR1, KTR2, and OsHAK1 haplotypes. These results demonstrate that KTR1 and KTR2 play critical roles in the K+-mediated regulation of OsHAK1 expression, thus controlling K+ and Cs+ uptake and allowing rice to adapt to varying K+ supplies.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two AP2/ERF transcription factors coregulate OsHAK1 to modulate potassium and cesium uptake in rice.\",\"authors\":\"Mengqi Li, Weihong Li, Yang Zeng, Xiangbin Lu, Xuesong Li, Hongye Qu, Mian Gu, Huimin Feng, Xin-Yuan Huang, Ling Yu, Guohua Xu\",\"doi\":\"10.1093/plcell/koaf205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Group-I alkali metals potassium (K) and cesium (Cs) serve as an essential nutrient and a harmful element, respectively. In rice (Oryza sativa), the high-affinity K+ (HAK) transporter OsHAK1 contributes to K+ and Cs+ acquisition; however, its regulatory mechanism remains unclear. Here, we report 2 OsHAK1 regulators belonging to the APETALA2/ethylene responsive factor family, designated POTASSIUM TRANSPORTER REGULATOR 1/2 (KTR1/2). Low K+ suppresses KTR1 but induces KTR2 expression. KTR1 inhibits and KTR2 enhances OsHAK1 expression. KTR1-knockout increases and KTR2-knockout decreases K+ and Cs+ uptake. Notably, KTR2 activates KTR1 expression, and the single mutation of KTR2 has a similar effect as the double mutation of KTR1 and KTR2 in impairing rice growth and grain yield. Furthermore, OsHAK1 inactivation in ktr1 mutants or KTR2-overexpression lines reduces Cs+ content to a similar level as in the oshak1 mutant. Enhancing KTR2 expression driven by its native promoter increases grain yield and K+ uptake. Variation in K+ content in grain is associated with differences of K+ content in soils where rice accessions show a distinct combination of KTR1, KTR2, and OsHAK1 haplotypes. These results demonstrate that KTR1 and KTR2 play critical roles in the K+-mediated regulation of OsHAK1 expression, thus controlling K+ and Cs+ uptake and allowing rice to adapt to varying K+ supplies.</p>\",\"PeriodicalId\":20186,\"journal\":{\"name\":\"Plant Cell\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koaf205\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koaf205","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Two AP2/ERF transcription factors coregulate OsHAK1 to modulate potassium and cesium uptake in rice.
The Group-I alkali metals potassium (K) and cesium (Cs) serve as an essential nutrient and a harmful element, respectively. In rice (Oryza sativa), the high-affinity K+ (HAK) transporter OsHAK1 contributes to K+ and Cs+ acquisition; however, its regulatory mechanism remains unclear. Here, we report 2 OsHAK1 regulators belonging to the APETALA2/ethylene responsive factor family, designated POTASSIUM TRANSPORTER REGULATOR 1/2 (KTR1/2). Low K+ suppresses KTR1 but induces KTR2 expression. KTR1 inhibits and KTR2 enhances OsHAK1 expression. KTR1-knockout increases and KTR2-knockout decreases K+ and Cs+ uptake. Notably, KTR2 activates KTR1 expression, and the single mutation of KTR2 has a similar effect as the double mutation of KTR1 and KTR2 in impairing rice growth and grain yield. Furthermore, OsHAK1 inactivation in ktr1 mutants or KTR2-overexpression lines reduces Cs+ content to a similar level as in the oshak1 mutant. Enhancing KTR2 expression driven by its native promoter increases grain yield and K+ uptake. Variation in K+ content in grain is associated with differences of K+ content in soils where rice accessions show a distinct combination of KTR1, KTR2, and OsHAK1 haplotypes. These results demonstrate that KTR1 and KTR2 play critical roles in the K+-mediated regulation of OsHAK1 expression, thus controlling K+ and Cs+ uptake and allowing rice to adapt to varying K+ supplies.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.