Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae233
Sarah A Pfaff, Edward R Wagner, Daniel J Cosgrove
{"title":"The structure and interaction of polymers affects secondary cell wall banding patterns in Arabidopsis.","authors":"Sarah A Pfaff, Edward R Wagner, Daniel J Cosgrove","doi":"10.1093/plcell/koae233","DOIUrl":"10.1093/plcell/koae233","url":null,"abstract":"<p><p>Xylem tracheary elements (TEs) synthesize patterned secondary cell walls (SCWs) to reinforce against the negative pressure of water transport. VASCULAR-RELATED NAC-DOMAIN 7 (VND7) induces differentiation, accompanied by cellulose, xylan, and lignin deposition into banded domains. To investigate the effect of polymer biosynthesis mutations on SCW patterning, we developed a method to induce tracheary element transdifferentiation of isolated protoplasts, by transient transformation with VND7. Our data showed that proper xylan elongation is necessary for distinct cellulose bands, cellulose-xylan interactions are essential for coincident polymer patterns, and cellulose deposition is needed to override the intracellular organization that yields unique xylan patterns. These data indicate that a properly assembled cell wall network acts as a scaffold to direct polymer deposition into distinctly banded domains. We describe the transdifferentiation of protoplasts into TEs, providing an avenue to study patterned SCW biosynthesis in a tissue-free environment and in various mutant backgrounds.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae144
Yanzhi Yang, Lei Xu, Chen Hao, Miaomiao Wan, Yihan Tao, Yan Zhuang, Yanning Su, Lei Li
{"title":"The microRNA408-plantacyanin module balances plant growth and drought resistance by regulating reactive oxygen species homeostasis in guard cells.","authors":"Yanzhi Yang, Lei Xu, Chen Hao, Miaomiao Wan, Yihan Tao, Yan Zhuang, Yanning Su, Lei Li","doi":"10.1093/plcell/koae144","DOIUrl":"10.1093/plcell/koae144","url":null,"abstract":"<p><p>The conserved microRNA (miRNA) miR408 enhances photosynthesis and compromises stress tolerance in multiple plants, but the cellular mechanism underlying its function remains largely unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), the transcript encoding the blue copper protein PLANTACYANIN (PCY) is the primary target for miR408 in vegetative tissues. PCY is preferentially expressed in the guard cells, and PCY is associated with the endomembrane surrounding individual chloroplasts. We found that the MIR408 promoter is suppressed by multiple abscisic acid (ABA)-responsive transcription factors, thus allowing PCY to accumulate under stress conditions. Genetic analysis revealed that PCY elevates reactive oxygen species (ROS) levels in the guard cells, promotes stomatal closure, reduces photosynthetic gas exchange, and enhances drought resistance. Moreover, the miR408-PCY module is sufficient to rescue the growth and drought tolerance phenotypes caused by gain- and loss-of-function of MYB44, an established positive regulator of ABA responses, indicating that the miR408-PCY module relays ABA signaling for regulating ROS homeostasis and drought resistance. These results demonstrate that miR408 regulates stomatal movement to balance growth and drought resistance, providing a mechanistic understanding of why miR408 is selected during land plant evolution and insights into the long-pursued quest of breeding drought-tolerant and high-yielding crops.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae203
Nancy A Eckardt, Yagut Allahverdiyeva, Clarisa E Alvarez, Claudia Büchel, Adrien Burlacot, Tanai Cardona, Emma Chaloner, Benjamin D Engel, Arthur R Grossman, Dvir Harris, Nicolas Herrmann, Michael Hodges, Jan Kern, Tom Dongmin Kim, Veronica G Maurino, Conrad W Mullineaux, Henna Mustila, Lauri Nikkanen, Gabriela Schlau-Cohen, Marcos A Tronconi, Wojciech Wietrzynski, Vittal K Yachandra, Junko Yano
{"title":"Lighting the way: Compelling open questions in photosynthesis research.","authors":"Nancy A Eckardt, Yagut Allahverdiyeva, Clarisa E Alvarez, Claudia Büchel, Adrien Burlacot, Tanai Cardona, Emma Chaloner, Benjamin D Engel, Arthur R Grossman, Dvir Harris, Nicolas Herrmann, Michael Hodges, Jan Kern, Tom Dongmin Kim, Veronica G Maurino, Conrad W Mullineaux, Henna Mustila, Lauri Nikkanen, Gabriela Schlau-Cohen, Marcos A Tronconi, Wojciech Wietrzynski, Vittal K Yachandra, Junko Yano","doi":"10.1093/plcell/koae203","DOIUrl":"10.1093/plcell/koae203","url":null,"abstract":"<p><p>Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Suppression of SMXL4 and SMXL5 confers enhanced thermotolerance through promoting HSFA2 transcription in Arabidopsis.","authors":"Yajie Pan, Bofan Yu, Xin Wei, Yuping Qiu, Xin Mao, Yuelin Liu, Wei Yan, Qianyan Linghu, Wenyang Li, Hongwei Guo, Zhonghua Tang","doi":"10.1093/plcell/koae224","DOIUrl":"10.1093/plcell/koae224","url":null,"abstract":"<p><p>Identifying the essential factors and underlying mechanisms regulating plant heat stress (HS) responses is crucial for mitigating the threat posed by HS on plant growth, development, distribution, and productivity. In this study, we found that the Arabidopsis (Arabidopsis thaliana) super-killer2 (ski2) dicer-like4 (dcl4) mutant, characterized by RNA processing defects and the accumulation of abundant 22-nt small interfering RNAs derived from protein-coding transcripts, displayed significantly increased expression levels of HS-responsive genes and enhanced thermotolerance. These traits primarily resulted from the suppression of SMAX1-LIKE4 (SMXL4) and SMXL5, which encode 2 putative transcriptional regulators that belong to the SMXL protein family. While smxl4 and smxl5 single mutants were similar to wild type, the smxl4 smxl5 double mutant displayed substantially heightened seedling thermotolerance. Further investigation demonstrated that SMXL4 and SMXL5 repressed the transcription of HEAT-SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), encoding a master regulator of thermotolerance, independently of ethylene-response factor-associated amphiphilic repression motifs. Moreover, SMXL4 and SMXL5 interacted with HSFA1d and HSFA1e, central regulators sensing and transducing HS stimuli, and antagonistically affected their transactivation activity. In addition, HSFA2 directly bound to the SMXL4 and SMXL5 promoters, inducing their expression during recovery from HS. Collectively, our findings elucidate the role of the SMXL4/SMXL5-HSFA2 regulatory module in orchestrating plant thermotolerance under HS.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae029
Jiyu Xin, Zhenzhen Min, Lu Yu, Xinyi Yuan, Aokun Liu, Wenping Wu, Xin Zhang, Huimin He, Jingyi Wu, Yueyong Xin, Robert E Blankenship, Changlin Tian, Xiaoling Xu
{"title":"Cryo-EM structure of HQNO-bound alternative complex III from the anoxygenic phototrophic bacterium Chloroflexus aurantiacus.","authors":"Jiyu Xin, Zhenzhen Min, Lu Yu, Xinyi Yuan, Aokun Liu, Wenping Wu, Xin Zhang, Huimin He, Jingyi Wu, Yueyong Xin, Robert E Blankenship, Changlin Tian, Xiaoling Xu","doi":"10.1093/plcell/koae029","DOIUrl":"10.1093/plcell/koae029","url":null,"abstract":"<p><p>Alternative complex III (ACIII) couples quinol oxidation and electron acceptor reduction with potential transmembrane proton translocation. It is compositionally and structurally different from the cytochrome bc1/b6f complexes but functionally replaces these enzymes in the photosynthetic and/or respiratory electron transport chains (ETCs) of many bacteria. However, the true compositions and architectures of ACIIIs remain unclear, as do their structural and functional relevance in mediating the ETCs. We here determined cryogenic electron microscopy structures of photosynthetic ACIII isolated from Chloroflexus aurantiacus (CaACIIIp), in apo-form and in complexed form bound to a menadiol analog 2-heptyl-4-hydroxyquinoline-N-oxide. Besides 6 canonical subunits (ActABCDEF), the structures revealed conformations of 2 previously unresolved subunits, ActG and I, which contributed to the complex stability. We also elucidated the structural basis of menaquinol oxidation and subsequent electron transfer along the [3Fe-4S]-6 hemes wire to its periplasmic electron acceptors, using electron paramagnetic resonance, spectroelectrochemistry, enzymatic analyses, and molecular dynamics simulations. A unique insertion loop in ActE was shown to function in determining the binding specificity of CaACIIIp for downstream electron acceptors. This study broadens our understanding of the structural diversity and molecular evolution of ACIIIs, enabling further investigation of the (mena)quinol oxidoreductases-evolved coupling mechanism in bacterial energy conservation.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139651403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae082
Josef Komenda, Roman Sobotka, Peter J Nixon
{"title":"The biogenesis and maintenance of PSII: Recent advances and current challenges.","authors":"Josef Komenda, Roman Sobotka, Peter J Nixon","doi":"10.1093/plcell/koae082","DOIUrl":"10.1093/plcell/koae082","url":null,"abstract":"<p><p>The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant CellPub Date : 2024-10-03DOI: 10.1093/plcell/koae201
Colleen Drapek, Annalisa Rizza, Nadiatul A Mohd-Radzman, Katharina Schiessl, Fabio Dos Santos Barbosa, Jiangqi Wen, Giles E D Oldroyd, Alexander M Jones
{"title":"Gibberellin dynamics governing nodulation revealed using GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula lateral organs.","authors":"Colleen Drapek, Annalisa Rizza, Nadiatul A Mohd-Radzman, Katharina Schiessl, Fabio Dos Santos Barbosa, Jiangqi Wen, Giles E D Oldroyd, Alexander M Jones","doi":"10.1093/plcell/koae201","DOIUrl":"10.1093/plcell/koae201","url":null,"abstract":"<p><p>During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MPK4-mediated phosphorylation of PHYTOCHROME INTERACTING FACTOR4 controls thermosensing by regulating histone variant H2A.Z deposition.","authors":"Neetu Verma, Dhanraj Singh, Lavanya Mittal, Gopal Banerjee, Stanzin Noryang, Alok Krishna Sinha","doi":"10.1093/plcell/koae223","DOIUrl":"10.1093/plcell/koae223","url":null,"abstract":"<p><p>Plants can perceive a slight upsurge in ambient temperature and respond by undergoing morphological changes, such as elongated hypocotyls and early flowering. The dynamic functioning of PHYTOCHROME INTERACTING FACTOR4 (PIF4) in thermomorphogenesis is well established, although the complete regulatory pathway involved in thermosensing remains elusive. We establish that an increase in temperature from 22 to 28 °C induces upregulation and activation of MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) in Arabidopsis (Arabidopsis thaliana), subsequently leading to the phosphorylation of PIF4. Phosphorylated PIF4 represses the expression of ACTIN-RELATED PROTEIN 6 (ARP6), which is required for mediating the deposition of histone variant H2A.Z at its target loci. Furthermore, we demonstrate that variations in ARP6 expression in PIF4 phosphor-null and phosphor-mimetic seedlings affect hypocotyl growth at 22 and 28 °C by modulating the regulation of ARP6-mediated H2A.Z deposition at the loci of genes involved in elongating hypocotyl cells. Interestingly, the expression of MPK4 is also controlled by H2A.Z deposition in a temperature-dependent manner. Taken together, these findings highlight the regulatory mechanism of thermosensing by which MPK4-mediated phosphorylation of PIF4 affects ARP6-mediated H2A.Z deposition at the genes involved in hypocotyl cell elongation.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}