An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Cell Pub Date : 2024-12-23 DOI:10.1093/plcell/koaf007
Qianyu Yue, Yinpeng Xie, Xinyue Yang, Yuxin Zhang, Zhongxing Li, Yunxiao Liu, Pengda Cheng, Ruiping Zhang, Yue Yu, Xiaofei Wang, Liao Liao, Yuepeng Han, Tao Zhao, Xuewei Li, Hengtao Zhang, Fengwang Ma, Qingmei Guan
{"title":"An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.","authors":"Qianyu Yue, Yinpeng Xie, Xinyue Yang, Yuxin Zhang, Zhongxing Li, Yunxiao Liu, Pengda Cheng, Ruiping Zhang, Yue Yu, Xiaofei Wang, Liao Liao, Yuepeng Han, Tao Zhao, Xuewei Li, Hengtao Zhang, Fengwang Ma, Qingmei Guan","doi":"10.1093/plcell/koaf007","DOIUrl":null,"url":null,"abstract":"<p><p>A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.). MdNAC18.1 activated the transcription of genes related to fruit softening (Polygalacturonase, PG) and ethylene biosynthesis (1-aminocyclopropane-1-carboxylic acid synthase, ACS), thereby promoting fruit ripening of apple and tomato (Solanum lycopersicum). There were two single-nucleotide polymorphisms (SNP-1,545 and SNP-2,002) and a 58-bp insertion-deletion (InDel-58) in the promoter region of MdNAC18.1. Among these, InDel-58 serves as the main effector in activating the expression of MdNAC18.1 and driving fruit ripening. InDel-58 determines the binding affinity of the class D MADS-box protein AGAMOUS-LIKE 11 (MdAGL11), a negative regulator of fruit ripening. The InDel-58 deletion in the early-ripening genotype reduces the inhibitory effect of MdAGL11 on MdNAC18.1. Moreover, MdNAC18.1 and its homologous genes originated from a common ancestor across 61 angiosperms, with functional diversification attributed to tandem replications that occurred in basal angiosperms. In summary, our study revealed how a set of natural variations influence fruit ripening and explored the functional diversification of MdNAC18.1 during evolution.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koaf007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.). MdNAC18.1 activated the transcription of genes related to fruit softening (Polygalacturonase, PG) and ethylene biosynthesis (1-aminocyclopropane-1-carboxylic acid synthase, ACS), thereby promoting fruit ripening of apple and tomato (Solanum lycopersicum). There were two single-nucleotide polymorphisms (SNP-1,545 and SNP-2,002) and a 58-bp insertion-deletion (InDel-58) in the promoter region of MdNAC18.1. Among these, InDel-58 serves as the main effector in activating the expression of MdNAC18.1 and driving fruit ripening. InDel-58 determines the binding affinity of the class D MADS-box protein AGAMOUS-LIKE 11 (MdAGL11), a negative regulator of fruit ripening. The InDel-58 deletion in the early-ripening genotype reduces the inhibitory effect of MdAGL11 on MdNAC18.1. Moreover, MdNAC18.1 and its homologous genes originated from a common ancestor across 61 angiosperms, with functional diversification attributed to tandem replications that occurred in basal angiosperms. In summary, our study revealed how a set of natural variations influence fruit ripening and explored the functional diversification of MdNAC18.1 during evolution.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信