水稻microRNA159-SPOROCYTELESS EAR2模块调控花粉发育过程中的淀粉生物合成,维持雄性育性。

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Cell Pub Date : 2024-12-23 DOI:10.1093/plcell/koae324
Jinyuan Tao, Wenwen Kong, Weigui Luo, Li Wang, Xing Dai, Xiaojing Lin, Haijiao Dong, Xiaoyu Yang, Beixin Mo, Xuemei Chen, Yu Yu
{"title":"水稻microRNA159-SPOROCYTELESS EAR2模块调控花粉发育过程中的淀粉生物合成,维持雄性育性。","authors":"Jinyuan Tao, Wenwen Kong, Weigui Luo, Li Wang, Xing Dai, Xiaojing Lin, Haijiao Dong, Xiaoyu Yang, Beixin Mo, Xuemei Chen, Yu Yu","doi":"10.1093/plcell/koae324","DOIUrl":null,"url":null,"abstract":"<p><p>Starch is an indispensable energy reserve for pollen and failure of starch biosynthesis in pollen leads to male sterility in flowering crops. Nonetheless, the regulatory mechanisms underlying starch biosynthesis in rice (Oryza sativa) pollen remain unclear. Here, we identified a target of the microRNA OsmiR159, SPOROCYTELESS ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-ASSOCIATED AMPHIPHILIC-REPRESSION 2 (OsSPEAR2). OsSPEAR2 is predominantly expressed in mature pollen and OsSPEAR2 possesses transcriptional repressor activity and localizes in the nucleus. Disruption of OsSPEAR2 results in severely shrunken pollen grains and male sterility. OsSPEAR2 interacts with multiple OsTCPs, including OsTCP14. OsTCP14 is a target of OsmiR319 and a knockout mutation in OsTCP14 partially rescues the defective pollen phenotype of Osspear2. In addition, transcriptome analyses revealed significant downregulation of numerous genes associated with carbohydrate metabolism, specifically in Osspear2 anthers, including several genes critical for starch biosynthesis. Moreover, OsTCP14 directly represses the expression of the essential starch biosynthesis gene OsUGP2; however, this repression could be alleviated by OsSPEAR2. Noteworthily, embryophyte-specific SPEAR2 and SPOROCYTELESS were also identified as miR159 targets involved in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana), indicating that the miR159-SPEAR regulatory module may be conserved among embryophytes. Collectively, our findings reveal OsmiR159-OsSPEAR2-OsTCP14-OsUGP2 as a regulatory cascade that modulates starch biosynthesis during pollen development in rice.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684084/pdf/","citationCount":"0","resultStr":"{\"title\":\"The rice microRNA159-SPOROCYTELESS EAR2 module regulates starch biosynthesis during pollen development and maintains male fertility.\",\"authors\":\"Jinyuan Tao, Wenwen Kong, Weigui Luo, Li Wang, Xing Dai, Xiaojing Lin, Haijiao Dong, Xiaoyu Yang, Beixin Mo, Xuemei Chen, Yu Yu\",\"doi\":\"10.1093/plcell/koae324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Starch is an indispensable energy reserve for pollen and failure of starch biosynthesis in pollen leads to male sterility in flowering crops. Nonetheless, the regulatory mechanisms underlying starch biosynthesis in rice (Oryza sativa) pollen remain unclear. Here, we identified a target of the microRNA OsmiR159, SPOROCYTELESS ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-ASSOCIATED AMPHIPHILIC-REPRESSION 2 (OsSPEAR2). OsSPEAR2 is predominantly expressed in mature pollen and OsSPEAR2 possesses transcriptional repressor activity and localizes in the nucleus. Disruption of OsSPEAR2 results in severely shrunken pollen grains and male sterility. OsSPEAR2 interacts with multiple OsTCPs, including OsTCP14. OsTCP14 is a target of OsmiR319 and a knockout mutation in OsTCP14 partially rescues the defective pollen phenotype of Osspear2. In addition, transcriptome analyses revealed significant downregulation of numerous genes associated with carbohydrate metabolism, specifically in Osspear2 anthers, including several genes critical for starch biosynthesis. Moreover, OsTCP14 directly represses the expression of the essential starch biosynthesis gene OsUGP2; however, this repression could be alleviated by OsSPEAR2. Noteworthily, embryophyte-specific SPEAR2 and SPOROCYTELESS were also identified as miR159 targets involved in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana), indicating that the miR159-SPEAR regulatory module may be conserved among embryophytes. Collectively, our findings reveal OsmiR159-OsSPEAR2-OsTCP14-OsUGP2 as a regulatory cascade that modulates starch biosynthesis during pollen development in rice.</p>\",\"PeriodicalId\":20186,\"journal\":{\"name\":\"Plant Cell\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684084/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koae324\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae324","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

淀粉是花粉不可缺少的能量储备,花粉中淀粉生物合成失败会导致开花作物的雄性不育。然而,水稻(Oryza sativa)花粉淀粉生物合成的调控机制尚不清楚。在这里,我们确定了微rna OsmiR159的靶标,即无孢子细胞乙烯反应元件结合因子相关的两亲性抑制2 (OsSPEAR2)。OsSPEAR2主要在成熟花粉中表达,具有转录抑制活性,定位于细胞核。OsSPEAR2的破坏导致花粉粒严重萎缩和雄性不育。OsSPEAR2与多个ostcp交互,包括OsTCP14。OsTCP14是OsmiR319的靶点,OsTCP14的敲除突变部分地挽救了Osspear2的缺陷花粉表型。此外,转录组分析显示,Osspear2花药中与碳水化合物代谢相关的许多基因显著下调,包括几个对淀粉生物合成至关重要的基因。此外,OsTCP14直接抑制淀粉必需生物合成基因OsUGP2的表达;然而,OsSPEAR2可以缓解这种抑制。值得注意的是,胚胎特异性的SPEAR2和SPOROCYTELESS也被鉴定为miR159靶点,参与调节拟南芥(Arabidopsis thaliana)的植物生长和发育,这表明miR159- spear调控模块可能在胚胎中保守。总的来说,我们的研究结果揭示了OsmiR159-OsSPEAR2-OsTCP14-OsUGP2是一个调节级联蛋白,在水稻花粉发育过程中调节淀粉的生物合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The rice microRNA159-SPOROCYTELESS EAR2 module regulates starch biosynthesis during pollen development and maintains male fertility.

Starch is an indispensable energy reserve for pollen and failure of starch biosynthesis in pollen leads to male sterility in flowering crops. Nonetheless, the regulatory mechanisms underlying starch biosynthesis in rice (Oryza sativa) pollen remain unclear. Here, we identified a target of the microRNA OsmiR159, SPOROCYTELESS ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-ASSOCIATED AMPHIPHILIC-REPRESSION 2 (OsSPEAR2). OsSPEAR2 is predominantly expressed in mature pollen and OsSPEAR2 possesses transcriptional repressor activity and localizes in the nucleus. Disruption of OsSPEAR2 results in severely shrunken pollen grains and male sterility. OsSPEAR2 interacts with multiple OsTCPs, including OsTCP14. OsTCP14 is a target of OsmiR319 and a knockout mutation in OsTCP14 partially rescues the defective pollen phenotype of Osspear2. In addition, transcriptome analyses revealed significant downregulation of numerous genes associated with carbohydrate metabolism, specifically in Osspear2 anthers, including several genes critical for starch biosynthesis. Moreover, OsTCP14 directly represses the expression of the essential starch biosynthesis gene OsUGP2; however, this repression could be alleviated by OsSPEAR2. Noteworthily, embryophyte-specific SPEAR2 and SPOROCYTELESS were also identified as miR159 targets involved in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana), indicating that the miR159-SPEAR regulatory module may be conserved among embryophytes. Collectively, our findings reveal OsmiR159-OsSPEAR2-OsTCP14-OsUGP2 as a regulatory cascade that modulates starch biosynthesis during pollen development in rice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信