Monika Kubalová, Martina Schmidtová, Matyáš Fendrych
{"title":"Unresolved roles of Aux/IAA proteins in auxin responses.","authors":"Monika Kubalová, Martina Schmidtová, Matyáš Fendrych","doi":"10.1111/ppl.70221","DOIUrl":"https://doi.org/10.1111/ppl.70221","url":null,"abstract":"<p><p>Aux/IAA proteins are well-known as key components of the nuclear auxin signaling pathway, repressing gene transcription when present and enabling gene activation upon their degradation. In this review, we explore the additional roles of Aux/IAA proteins in the known auxin perception pathways-the TIR1/AFBs nuclear as well as in the emerging cytoplasmic and apoplastic pathways. We summarize recent advances in understanding the regulation of Aux/IAA protein stability at the post-translational level, a critical factor in auxin-regulated transcriptional output. We further highlight the roles of auxin-nondegradable non-canonical Aux/IAAs in auxin-mediated transcription and their involvement in apoplastic auxin signalling. Additionally, we discuss the importance of Aux/IAAs for the adenylate cyclase activity of TIR1/AFB receptors and speculate on their involvement in the cytoplasmic auxin pathway. Using Arabidopsis root as a model, this work underscores the central role of Aux/IAA proteins in mediating auxin-driven developmental processes and environmental responses. Key questions for future research are proposed to further unravel the dynamic roles of Aux/IAAs in auxin signaling networks.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70221"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144029192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kees J M Boot, Sander C Hille, Kees R Libbenga, Marijke Libbenga-Nijkamp, Omid Karami, Bert Van Duijn, Remko Offringa
{"title":"Mathematical analysis of long-distance polar auxin transport data of pin mutants questions the role of PIN1 as postulated in the chemi-osmotic theory.","authors":"Kees J M Boot, Sander C Hille, Kees R Libbenga, Marijke Libbenga-Nijkamp, Omid Karami, Bert Van Duijn, Remko Offringa","doi":"10.1111/ppl.70139","DOIUrl":"10.1111/ppl.70139","url":null,"abstract":"<p><p>The plant hormone auxin (Indole-3-Acetic Acid, IAA) is a key player in nearly every aspect of plant growth and development ranging from cell division and cell elongation to embryogenesis and root formation. The IAA level in specific tissues and cells is regulated by synthesis, conjugation, degradation and transport. Especially long-range polar auxin transport (PAT) has been the subject of numerous studies. The chemi-osmotic theory predicts that intercellular PAT is caused by an asymmetric distribution of auxin efflux transporters in cell membranes of transporting cells, resulting in increased local membrane permeability for IAA. Members of the PIN gene family are generally considered to encode the postulated carriers. The objective of this study was to use the chemi-osmotic theory in an experimental program aimed at describing and interpreting long-range PAT data from mutants of the PIN gene family of Arabidopsis thaliana. Therefore, we put the chemi-osmotic theory in a broader theoretical framework. We find that the observed decrease in both auxin flux and transport velocity in pin1 loss-of-function mutants is not caused by decreased basal membrane permeability, as would be expected according to the chemi-osmotic theory, but is an indirect effect caused by a change in the dynamics of auxin transport due to a decrease in the expression of all four AUX1/LAX1-3 auxin influx carriers in pin1 mutants. On the basis of our findings, we conclude that the exact role of PIN1 in long-distance PAT, as postulated in the chemi-osmotic theory, should be reconsidered.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70139"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Zhao, Daniel Chen, Inga R Grin, Dmitry O Zharkov, Bing Yu
{"title":"Developing plant-derived DNA repair enzyme resources through studying the involvement of base excision repair DNA glycosylases in stress responses of plants.","authors":"Ying Zhao, Daniel Chen, Inga R Grin, Dmitry O Zharkov, Bing Yu","doi":"10.1111/ppl.70162","DOIUrl":"10.1111/ppl.70162","url":null,"abstract":"<p><p>DNA damage caused by internal and external stresses negatively affects plant growth and development. In this, DNA repair enzymes play an important role in recognizing and repairing the caused DNA damage. The first key enzymes in the base excision repair (BER) pathway are DNA glycosylases. In this paper, we present updated knowledge on the classification, phylogeny and conserved structural domains of DNA glycosylases in the plant base excision repair pathway. It describes the key roles played by the DNA glycosylases in plant stress responses, and focuses on the molecular mechanisms of plant stress tolerance from the perspective of the DNA repair system. New opportunities for the development of plant-derived DNA repair genes and DNA repair enzyme resources are discussed.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70162"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143670626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paramdeep Kumar, Saurabh Pandey, Pratap Kumar Pati
{"title":"Interaction between pathogenesis-related (PR) proteins and phytohormone signaling pathways in conferring disease tolerance in plants.","authors":"Paramdeep Kumar, Saurabh Pandey, Pratap Kumar Pati","doi":"10.1111/ppl.70174","DOIUrl":"10.1111/ppl.70174","url":null,"abstract":"<p><p>Pathogenesis-related (PR) proteins are critical defense signaling molecules induced by phytopathogens. They play a vital role in plant's defense signaling pathways and innate immunity, particularly in systemic acquired resistance (SAR) and serve as key molecular markers of plant defense. Overexpressing PR genes, such as chitinase, thaumatin, glucanase, thionin and defensin, either individually or in combination, have significantly boosted plants' defense responses against various pathogens. However, signaling pathways regulating the expression of these versatile proteins remain only partially understood. Plant hormones like salicylic acid (SA) and jasmonic acid (JA) are known for their well-established roles in regulating PR gene responses to pathogens and other stress conditions. PR genes interact with various components of hormonal signaling pathways, including receptors (e.g., NPR1 in SA signaling), transcription factors (e.g., MYC2 in JA signaling), and cis-regulating elements (e.g., W-box), to modulate plant defense responses. Recent studies have highlighted the contributions of different plant hormones to plant immunity and their interactions with PR proteins in a process known as hormonal crosstalk, which helps coordinate immunity activation. This review provides a comprehensive overview of the PR proteins, their complexity, and hormonal crosstalk in immunity, aiming to understand these interactions for improved pathogen resistance.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70174"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143710129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"WRKY75-mediated transcriptional regulation of OASA1 controls leaf senescence in Arabidopsis.","authors":"Qijun Ma, Shuo Xu, Shi Hu, Kaijing Zuo","doi":"10.1111/ppl.70193","DOIUrl":"10.1111/ppl.70193","url":null,"abstract":"<p><p>Cysteine plays a crucial role in various processes throughout plant growth and development stages. The gene OASA1 can produce cysteine in Arabidopsis. However, the potential developmental roles of OASA1 have not been explored during senescence. In the present study, the gene OASA1 showed increasing expression during senescence. Compared with Col-0, the mutant oasa1-1 and oasa1-2 showed late leaf senescence, which may be due to disturbed cysteine homeostasis. The mutant exhibited lower total cysteine content and reduced chlorophyll degradation. Meanwhile, WRKY75 promotes cysteine production by inducing the transcription of OASA1 expression, affecting leaf senescence. Our results demonstrate that the senescence-responsive transcription factor WRKY75 directly activates the expression of OASA1 to promote cysteine accumulation and H<sub>2</sub>O<sub>2</sub> content, suggesting a mechanism by which senescence regulates cysteine accumulation in plants.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70193"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143772766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Krzysztof Sikorski, Przemysław Ryszka, Piotr Dąbrowski, Hazem M Kalaji, Katarzyna Turnau
{"title":"Screening fungal partners for enhancing the vitality of a xenic algal culture via photosynthetic efficiency.","authors":"Krzysztof Sikorski, Przemysław Ryszka, Piotr Dąbrowski, Hazem M Kalaji, Katarzyna Turnau","doi":"10.1111/ppl.70177","DOIUrl":"10.1111/ppl.70177","url":null,"abstract":"<p><p>The xenic strain Chlorella sorokiniana was grown together with selected fungal strains to investigate the effect of fungi on the algal photosynthetic performance during cultivation. The introduction of well-selected fungal strains can potentially increase algal cultivation efficiency. The bacteria that inhabited the algae were identified and the coexistence of the fungi with the algae and bacteria in liquid and solid media was examined. Chlorophyll a fluorescence measurement, a commonly used method for determining the efficiency of plant photosynthesis under stressful conditions, was used to assess the condition of the algae. The algae were cultivated for eight weeks without supplementing the nutrient solution. The experiments showed that the fungal strains Clonostachys rosea, Rhodotorula mucilaginosa and Mortierella alpina formed stable interactions with the microalga C. sorokiniana and the bacteria in the microalgal culture. The time of the measurement and treatments caused changes in the fluorescence curve patterns. Differences in the profiles of the curves in different phases revealed modifications in the operation of the light-dependent photochemical reactions. Generally, the most positive changes in the chlorophyll a fluorescence induction curves (OJIP) were recorded in the double inoculation of C. sorokiniana with R. mucilaginosa + M. alpina and R. mucilaginosa + C. rosea. The results show that selected combinations of fungal strains can be a tool to improve the photosynthetic efficiency of C. sorokiniana.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70177"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143701213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blanca Salazar-Sarasua, Edelin Roque, Carlos González-Sanz, Aureliano Bombarely, Camilla Girardi, Joan García-Sánchez, Luis A Cañas, José Pío Beltrán, Concepción Gómez-Mena
{"title":"Male sterility-induced parthenocarpy arose during tomato domestication.","authors":"Blanca Salazar-Sarasua, Edelin Roque, Carlos González-Sanz, Aureliano Bombarely, Camilla Girardi, Joan García-Sánchez, Luis A Cañas, José Pío Beltrán, Concepción Gómez-Mena","doi":"10.1111/ppl.70182","DOIUrl":"10.1111/ppl.70182","url":null,"abstract":"<p><p>The huge diversity of cultivated tomatoes is the result of a long process of domestication followed by intensive breeding. Breeding efforts have been focused on increasing fruit size and on the diversification of fruit phenotypes. The formation of seedless (parthenocarpic) fruits in tomato plants is an interesting trait for growers, providing a mechanism to overcome fertilization failure under unfavourable environmental conditions. Early anther or pollen ablation is an effective strategy to promote parthenocarpy in tomato plants and was proven to be effective in several tomato cultivars. Whether this is an ancestral trait or was acquired during domestication and breeding is unknown. In this study, we evaluated the formation of parthenocarpic fruits in the cultivated tomato and the wild relative Solanum pimpinellifolium through the generation of male-sterile mutants. Only cultivated tomatoes, but not Solanum pimpinellifolium plants, produced seedless fruits. Expression analyses showed that parthenocarpy correlates with the activation of fertilization-independent gibberellin biosynthesis in the ovaries. When compared with wild relatives, modern tomato cultivars present small deletions in the promoter of these genes that could account for the differences in gene expression that ultimately trigger parthenocarpy. Our results suggest that seedless fruit production was actively repressed in the absence of pollination in the ancestral tomato lineages.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70182"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143754101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CRISPR/Cas9-mediated editing of BADH2 and Wx genes for the development of novel aromatic and soft-textured black and red rice.","authors":"Wenhao Wu, Rui Miao, Zhenghan Li, Zhongming Fang","doi":"10.1111/ppl.70194","DOIUrl":"10.1111/ppl.70194","url":null,"abstract":"<p><p>Black and red rice are known for their rich nutritional content, yet most varieties suffer from a firm texture and insufficient fragrance. In this study, we aimed to develop a fragrant and soft-textured black and red rice variety using the CRISPR/Cas9 technology to knock out the OsWx gene, which is associated with amylose content (AC), and the OsBADH2 gene, responsible for rice aroma. Our results showed that, compared to wild-type, CRISPR lines of XHZ, HM, NWZ, and PGZ targeting OsWx and OsBADH2 exhibited a reduction in AC content, altered gel consistency, and a more than 50% increase in gel consistency. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) analysis revealed that the 2-acetyl-1-pyrroline (2-AP) content in the grains of xhz-c<sup>BADH2 Wx</sup> and hm-c<sup>BADH2 Wx</sup> reached 189.04 μg kg<sup>-1</sup> and 309.03 μg kg<sup>-1</sup>, respectively. Furthermore, we observed a slight increase in anthocyanins and proanthocyanidins in these co-edited lines, without significant effects on their agronomic traits. Furthermore, to investigate the genes involved in the quality formation of black and red rice for the knockout of OsBADH2 and OsWx, we conducted RNA-seq analysis. The results indicated that knockout of OsBADH2 and OsWx affected the expression of genes involved in carotenoid biosynthesis, multiple amino acid metabolism genes, and endosperm starch and sucrose metabolic pathways. These findings suggest that the CRISPR/Cas9 technology can effectively target OsBADH2 and OsWx to develop high-quality black and red rice varieties with enhanced aroma and softer texture, providing a new strategy for the improvement of colored rice.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70194"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yibo Sun, Xuankun Zhang, Hao Zhang, Minghui Zhang, Shaokun Sun, Wangzhen Han, Xiaojia Zhang, Muhammad Irfan, Lijing Chen, Li Zhang
{"title":"LvWRKY75 enhances the transcription of LvMYB5 and promotes anthocyanin biosynthesis in lily petals during the blooming phase.","authors":"Yibo Sun, Xuankun Zhang, Hao Zhang, Minghui Zhang, Shaokun Sun, Wangzhen Han, Xiaojia Zhang, Muhammad Irfan, Lijing Chen, Li Zhang","doi":"10.1111/ppl.70143","DOIUrl":"10.1111/ppl.70143","url":null,"abstract":"<p><p>Anthocyanin accumulation plays a crucial role in enhancing Lilium petal colouration; however, breeding efforts are hindered by our lack of understanding of the complex molecular mechanism behind the pigment's synthesis. This study explores the potential role of the WRKY family gene WRKY75 in anthocyanin synthesis in lilies. Contrary to the inhibitory effect observed in Arabidopsis thaliana, both transient silencing and overexpression analyses of LvWRKY75 indicate that the gene positively regulates anthocyanin synthesis in lilies. The overexpression of LvWRKY75 was found to cause a significant upregulation of structural genes pivotal for anthocyanin biosynthesis in lilies, including Lv3GT, LvDFR and LvANS, as well as the anthocyanin synthesis regulatory gene LvMYB5. Further in-depth analyses, including yeast one-hybrid, electrophoretic mobility shift assay, and dual-luciferase assays, demonstrated that LvWRKY75 binds to the promoter of LvMYB5, enhancing its transcriptional activity. In turn, the increased expression of LvMYB5 upregulates the transcription of downstream genes such as LvDFR and LvANS. In summary, this study provides a deeper understanding of the mechanisms behind anthocyanin synthesis in lilies, contributing to improving molecular breeding strategies for enhancing the flowers' ornamental value and commercial appeal.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70143"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fusion of transgene and interspecies hybridization enhances seed yield and root rot disease resistance in Jatropha curcas.","authors":"Xue Bai, Yiqing Su, Zhonghong Huang, Tong Cheng, Ping Huang, Mingyong Tang","doi":"10.1111/ppl.70183","DOIUrl":"10.1111/ppl.70183","url":null,"abstract":"<p><p>Perennial woody plants play an indispensable role in sustainable production. To shorten their juvenile phase and improve health, Jatropha curcas, a classic bioenergy crop, serves as a model for a breeding strategy integrating transgenes with interspecific hybridization. Specifically, overexpressing JcFT (JcFT-OE) J. curcas exhibiting early flowering were crossed with Jatropha integerrima exhibiting bright flowers and robust stems. The resulting hybrids were then backcrossed (BC) with JcFT-OE plants to refine the desired traits. The F1 generation displayed early flowering and an intermediary type of parents, with hard stems, more xylem, lower seed yields, and higher C18:2 content in the seed oil compared to those of wildtype and JcFT-OE transgenic plants. The BC1 generation showed early flowering, diverse shapes of fruit and seeds, and higher seed yield than the F1 generation. Among these lines, BC1-3 produced the highest yield, while the seed yields of J. integerrima, F1 and BC1-1 had notably low yields attributed to fruit dropping. Notably, F1 and BC1 plants demonstrated enhanced resistance to root rot caused by Lasiodiplodia theobromae and lignin contents of stems compared to JcFT-OE, a trait inherited from J. integerrima. Overall, the hybrid plants inherited desirable traits such as precocity and root rot resistance from their parents, resulting in higher seed yields in BC1 individuals. Blending transgenes with hybridization in Jatropha curcas enriches traits, boosting yields and disease resistance in woody plants. Furthermore, FT overexpression has substantial superiority in accelerating the breeding process in woody trees.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70183"},"PeriodicalIF":5.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143711050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}