Sara M Rydman, Jenna Lihavainen, Kathryn M Robinson, Stefan Jansson, Benedicte R Albrectsen, Nathaniel R Street
{"title":"白杨特化代谢物生物合成候选基因的代谢组学和转录组学资源。","authors":"Sara M Rydman, Jenna Lihavainen, Kathryn M Robinson, Stefan Jansson, Benedicte R Albrectsen, Nathaniel R Street","doi":"10.1111/ppl.70567","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to identify candidate genes involved in the biosynthesis of salicinoid phenolic glycosides (SPGs), a group of specialised metabolites characteristic of the Salicaceae family. While the integration of multi-omics data represents a powerful approach to link genes encoding enzymes and their regulatory factors to metabolite biosynthesis, suitable multi-omics data resources are scarce. We present a comprehensive dataset comprising untargeted liquid chromatography-mass spectrometry (LC-MS) and mRNA-sequencing data from various organs of European aspen (Populus tremula L.) and from genotypes that produce contrasting sets of SPGs. We present a reproducible pipeline for the analysis of the LC-MS data, including predicted annotation of potential novel SPGs. We demonstrate the utility of the resource by identifying candidate genes involved in the biosynthesis of SPGs with a cinnamoyl moiety. By integrating gene and metabolite differential analyses with a gene co-expression network, we identified two HXXXD-type acyltransferase genes and one UDP-glucosyltransferase gene as candidates for future downstream characterisation. The combined gene expression and metabolomics resource is integrated into PlantGenIE.org to facilitate easy access and data mining. All raw data are available in public databases, and all data and results files are available at an associated Figshare repository.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 5","pages":"e70567"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Metabolomics and Transcriptomics Resource for Identifying Candidate Genes in the Biosynthesis of Specialised Metabolites in Populus tremula.\",\"authors\":\"Sara M Rydman, Jenna Lihavainen, Kathryn M Robinson, Stefan Jansson, Benedicte R Albrectsen, Nathaniel R Street\",\"doi\":\"10.1111/ppl.70567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to identify candidate genes involved in the biosynthesis of salicinoid phenolic glycosides (SPGs), a group of specialised metabolites characteristic of the Salicaceae family. While the integration of multi-omics data represents a powerful approach to link genes encoding enzymes and their regulatory factors to metabolite biosynthesis, suitable multi-omics data resources are scarce. We present a comprehensive dataset comprising untargeted liquid chromatography-mass spectrometry (LC-MS) and mRNA-sequencing data from various organs of European aspen (Populus tremula L.) and from genotypes that produce contrasting sets of SPGs. We present a reproducible pipeline for the analysis of the LC-MS data, including predicted annotation of potential novel SPGs. We demonstrate the utility of the resource by identifying candidate genes involved in the biosynthesis of SPGs with a cinnamoyl moiety. By integrating gene and metabolite differential analyses with a gene co-expression network, we identified two HXXXD-type acyltransferase genes and one UDP-glucosyltransferase gene as candidates for future downstream characterisation. The combined gene expression and metabolomics resource is integrated into PlantGenIE.org to facilitate easy access and data mining. All raw data are available in public databases, and all data and results files are available at an associated Figshare repository.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 5\",\"pages\":\"e70567\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70567\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70567","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A Metabolomics and Transcriptomics Resource for Identifying Candidate Genes in the Biosynthesis of Specialised Metabolites in Populus tremula.
This study aims to identify candidate genes involved in the biosynthesis of salicinoid phenolic glycosides (SPGs), a group of specialised metabolites characteristic of the Salicaceae family. While the integration of multi-omics data represents a powerful approach to link genes encoding enzymes and their regulatory factors to metabolite biosynthesis, suitable multi-omics data resources are scarce. We present a comprehensive dataset comprising untargeted liquid chromatography-mass spectrometry (LC-MS) and mRNA-sequencing data from various organs of European aspen (Populus tremula L.) and from genotypes that produce contrasting sets of SPGs. We present a reproducible pipeline for the analysis of the LC-MS data, including predicted annotation of potential novel SPGs. We demonstrate the utility of the resource by identifying candidate genes involved in the biosynthesis of SPGs with a cinnamoyl moiety. By integrating gene and metabolite differential analyses with a gene co-expression network, we identified two HXXXD-type acyltransferase genes and one UDP-glucosyltransferase gene as candidates for future downstream characterisation. The combined gene expression and metabolomics resource is integrated into PlantGenIE.org to facilitate easy access and data mining. All raw data are available in public databases, and all data and results files are available at an associated Figshare repository.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.