Plasma Processes and Polymers最新文献

筛选
英文 中文
Nitrogen fixation and H202H2O2 ${{rm{H}}}_{2}{{rm{O}}}_{2}$ production by an atmospheric pressure plasma jet operated in He–H20–N2–O2 gas mixtures 在 He-H20-N2-O2 气体混合物中运行的常压等离子体射流的固氮作用和 H202H2O2 ${{rm{H}}}_{2}{{{rm{O}}}_{2}$ 生产过程
IF 3.5 3区 物理与天体物理
Plasma Processes and Polymers Pub Date : 2024-05-02 DOI: 10.1002/ppap.202300233
Steffen Schüttler, Jannis Kaufmann, Judith Golda
{"title":"Nitrogen fixation and H202H2O2 ${{rm{H}}}_{2}{{rm{O}}}_{2}$ production by an atmospheric pressure plasma jet operated in He–H20–N2–O2 gas mixtures","authors":"Steffen Schüttler, Jannis Kaufmann, Judith Golda","doi":"10.1002/ppap.202300233","DOIUrl":"https://doi.org/10.1002/ppap.202300233","url":null,"abstract":"Atmospheric pressure plasmas are widely used for nitrogen fixation processes to produce ammonia NH3 or nitrogen oxides NO<jats:italic>x</jats:italic>, including, for example, nitrite NO2− or nitrate NO3−. Small‐scale atmospheric pressure plasma jets (APPJs) can provide the production of these species on demand at the site of consumption. The species of interest are generated by the plasma and can be dissolved in liquids, for example, to use them. In this work, liquid treatments were performed by an APPJ operated in a He––– gas composition to investigate the influence of the gas composition on the production of hydrogen peroxide , and . A validation of two diagnostics showed that the spectrophotometric approach using ammonium metavanadate was interfered by other species when was added to the system. Thus, electrochemical sensing of was performed. The concentrations of and were measured by commercially available test kits based on the o‐phythalaldehyde method and the Griess reagent, respectively. At low admixtures, the dominant species was with a maximum concentration of 0.9 mM, while became dominant at admixtures of 0.5% and higher with concentrations of up to 1.5 mM. was also present in the system and could be measured at low concentrations of less than 0.2 mM in the liquid. By varying the treatment distance and the gas flow rate, insights into the transport phenomena of the species and their dissolution into the liquid could be gained. Low‐frequency pulsing of the radio frequency (RF) jet led to an accumulating effect on , a reduced production of and a switch from ‐dominated production to ‐dominated production.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"2 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanosecond pulsed discharge plasma modified porous polymer adsorbent materials for efficient removal of low‐concentration bisphenol A in liquid 用于高效去除液体中低浓度双酚 A 的纳秒脉冲放电等离子体改性多孔聚合物吸附材料
IF 3.5 3区 物理与天体物理
Plasma Processes and Polymers Pub Date : 2024-04-29 DOI: 10.1002/ppap.202400021
Chao‐Jun Chen, Yi‐Nong Li, Hong‐Li Wang, Ke Lu, Zhi Zheng, Hao Yuan, Jian‐Ping Liang, Wen‐Chun Wang, Li‐Ping Han, De‐Zheng Yang
{"title":"Nanosecond pulsed discharge plasma modified porous polymer adsorbent materials for efficient removal of low‐concentration bisphenol A in liquid","authors":"Chao‐Jun Chen, Yi‐Nong Li, Hong‐Li Wang, Ke Lu, Zhi Zheng, Hao Yuan, Jian‐Ping Liang, Wen‐Chun Wang, Li‐Ping Han, De‐Zheng Yang","doi":"10.1002/ppap.202400021","DOIUrl":"https://doi.org/10.1002/ppap.202400021","url":null,"abstract":"The efficient removal of low‐concentration endocrine disruptors is crucial for the protection of the aquatic environment. In this study, porous polymer adsorbent materials were modified by nanosecond pulsed discharge plasma to achieve efficient adsorption of low‐concentration bisphenol A (BPA). The removal efficiency of BPA reached 99% after 10 min of plasma modification at a pulse peak voltage of 28 kV, which increased by 25.8% compared to the raw materials. This enhancement was attributed to the increase of active sites and oxygen‐containing functional groups. The adsorption behaviors of the porous polymer materials were primarily dominated by monolayer chemisorption. Subsequently, comparative experiments further verified the high‐efficiency adsorption performance of porous polymer materials after plasma treatment.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"86 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140827065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stretch‐tolerant PECVD gas barrier coatings for sustainable flexible packaging 用于可持续软包装的耐拉伸 PECVD 气体阻隔涂层
IF 3.5 3区 物理与天体物理
Plasma Processes and Polymers Pub Date : 2024-04-19 DOI: 10.1002/ppap.202400018
Philipp Alizadeh, Jonas Franke, Rainer Dahlmann
{"title":"Stretch‐tolerant PECVD gas barrier coatings for sustainable flexible packaging","authors":"Philipp Alizadeh, Jonas Franke, Rainer Dahlmann","doi":"10.1002/ppap.202400018","DOIUrl":"https://doi.org/10.1002/ppap.202400018","url":null,"abstract":"This study employs X‐ray photoelectron spectroscopy (XPS), thickness measurements, permeation analysis and laser scanning microscopy to analyse the stretch tolerance in dependence of the chemical composition and deposition rates of plasma‐enhanced chemical vapour deposition coatings. SiO<jats:sub><jats:italic>x</jats:italic></jats:sub> and SiOCH coatings are deposited on polyethylene terephthalate film using a full factorial study design of three parameters (monomer/oxygen mass flow and pulse duration). They exhibit distinct differences, with the monomer mass flow emerging as a critical factor influencing deposition rates and stretch tolerance. SiOCH coatings demonstrate faster growth rates due to higher monomer flow. SiO<jats:sub><jats:italic>x</jats:italic></jats:sub> coatings exhibit superior barrier performance. Stretch tolerance does not solely correlate with atomic composition, since a SiO<jats:sub><jats:italic>x</jats:italic></jats:sub> coating with higher‐than‐predicted stretch tolerance was observed.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"49 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of cold plasma seed treatments on nodulation and plant growth in pea (Pisum sativum) and lentil (Lens culinaris) 冷等离子体种子处理对豌豆(Pisum sativum)和扁豆(Lens culinaris)的结瘤和植物生长的影响
IF 3.5 3区 物理与天体物理
Plasma Processes and Polymers Pub Date : 2024-04-17 DOI: 10.1002/ppap.202400015
Dhanuja N. Abeysingha, Shifa Dinesh, M. S. Roopesh, Thomas D. Warkentin, Malinda S. Thilakarathna
{"title":"The effect of cold plasma seed treatments on nodulation and plant growth in pea (Pisum sativum) and lentil (Lens culinaris)","authors":"Dhanuja N. Abeysingha, Shifa Dinesh, M. S. Roopesh, Thomas D. Warkentin, Malinda S. Thilakarathna","doi":"10.1002/ppap.202400015","DOIUrl":"https://doi.org/10.1002/ppap.202400015","url":null,"abstract":"Cold plasma enhances various biological processes in plants. This study assessed the impact of cold plasma seed treatments on nodulation, root, and shoot growth in pea and lentil under controlled environmental conditions. Seeds were treated with cold plasma generated by a dielectric barrier discharge (DBD) and a pin electrode reactor (PER), with three different exposure durations (3, 6, and 12 min). At 4 weeks, notable enhancements were observed in nodule number and dry weight, root dry weight, length, volume, surface area, and shoot dry weight. The 3‐ and 6‐min exposure using the DBD and the 3‐min exposure using the PER system demonstrated the most significant increases or upward trends in these traits, highlighting the intricate nature of seed–plasma interactions.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"2 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the interaction mechanisms of cold atmospheric plasma and amino acids by machine learning 通过机器学习揭示冷大气等离子体与氨基酸的相互作用机制
IF 3.5 3区 物理与天体物理
Plasma Processes and Polymers Pub Date : 2024-04-15 DOI: 10.1002/ppap.202300230
Zhao‐Nan Chai, Xu‐Cheng Wang, Maksudbek Yusupov, Yuan‐Tao Zhang
{"title":"Unveiling the interaction mechanisms of cold atmospheric plasma and amino acids by machine learning","authors":"Zhao‐Nan Chai, Xu‐Cheng Wang, Maksudbek Yusupov, Yuan‐Tao Zhang","doi":"10.1002/ppap.202300230","DOIUrl":"https://doi.org/10.1002/ppap.202300230","url":null,"abstract":"Plasma medicine has attracted tremendous interest in a variety of medical conditions, ranging from wound healing to antimicrobial applications, even in cancer treatment, through the interactions of cold atmospheric plasma (CAP) and various biological tissues directly or indirectly. The underlying mechanisms of CAP treatment are still poorly understood although the oxidative effects of CAP with amino acids, peptides, and proteins have been explored experimentally. In this study, machine learning (ML) technology is introduced to efficiently unveil the interaction mechanisms of amino acids and reactive oxygen species (ROS) in seconds based on the data obtained from the reactive molecular dynamics (MD) simulations, which are performed to probe the interaction of five types of amino acids with various ROS on the timescale of hundreds of picoseconds but with the huge computational load of several days. The oxidative reactions typically start with H‐abstraction, and the details of the breaking and formation of chemical bonds are revealed; the modification types, such as nitrosylation, hydroxylation, and carbonylation, can be observed. The dose effects of ROS are also investigated by varying the number of ROS in the simulation box, indicating agreement with the experimental observation. To overcome the limits of timescales and the size of molecular systems in reactive MD simulations, a deep neural network (DNN) with five hidden layers is constructed according to the reaction data and employed to predict the type of oxidative modification and the probability of occurrence only in seconds as the dose of ROS varies. The well‐trained DNN can effectively and accurately predict the oxidative processes and productions, which greatly improves the computational efficiency by almost ten orders of magnitude compared with the reactive MD simulation. This study shows the great potential of ML technology to efficiently unveil the underpinning mechanisms in plasma medicine based on the data from reactive MD simulations or experimental measurements.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"26 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of plasma chemistry in CO2 hydrogenation using a dielectric barrier discharge reactor 利用介质阻挡放电反应器进行二氧化碳氢化的等离子化学机制
IF 3.5 3区 物理与天体物理
Plasma Processes and Polymers Pub Date : 2024-04-15 DOI: 10.1002/ppap.202300215
Xuming Zhang, Yun Shan, Zhi Sun, Hua Pan, Liancheng Zhang, Zuchao Zhu, Fada Feng, Jingyi Han, Kai Li
{"title":"Mechanism of plasma chemistry in CO2 hydrogenation using a dielectric barrier discharge reactor","authors":"Xuming Zhang, Yun Shan, Zhi Sun, Hua Pan, Liancheng Zhang, Zuchao Zhu, Fada Feng, Jingyi Han, Kai Li","doi":"10.1002/ppap.202300215","DOIUrl":"https://doi.org/10.1002/ppap.202300215","url":null,"abstract":"Plasma‐induced CO<jats:sub>2</jats:sub> hydrogenation process has received much attention, while the related plasma chemistry has not been profoundly explored. Herein, electron‐induced and thermochemical effects on CO<jats:sub>2</jats:sub> hydrogenation in a dielectric barrier discharge reactor were investigated. The temperatures for the discharge pattern transition for CO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>, CO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>/N<jats:sub>2</jats:sub>, CO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>/Ar, and CO<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub>/He mixtures were 623, 623, 600, and 600 K, respectively. CO<jats:sub>2</jats:sub> conversion was controlled by electron‐induced reactions and was sensitive to discharge pattern and electron density but not electron energy. In contrast, product formation was governed by the thermo‐induced chemistry. These results are useful for a better understanding of plasma‐induced CO<jats:sub>2</jats:sub> hydrogenation.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"44 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma catalytic CO2 hydrogenation to methanol: The interaction between MnOx and ZrO2 等离子体催化二氧化碳加氢制甲醇:氧化锰和氧化锆之间的相互作用
IF 3.5 3区 物理与天体物理
Plasma Processes and Polymers Pub Date : 2024-04-12 DOI: 10.1002/ppap.202400037
Xuming Zhang, Yun Shan, Zhi Sun, Hua Pan, Yuzhen Jin, Zuchao Zhu, Liancheng Zhang, Wenhao Lin, Zhengbo Dai, Zhengang Lou, Huaming Li, Kai Li
{"title":"Plasma catalytic CO2 hydrogenation to methanol: The interaction between MnOx and ZrO2","authors":"Xuming Zhang, Yun Shan, Zhi Sun, Hua Pan, Yuzhen Jin, Zuchao Zhu, Liancheng Zhang, Wenhao Lin, Zhengbo Dai, Zhengang Lou, Huaming Li, Kai Li","doi":"10.1002/ppap.202400037","DOIUrl":"https://doi.org/10.1002/ppap.202400037","url":null,"abstract":"Plasma catalytic CO<jats:sub>2</jats:sub> hydrogenation to methanol over MnO<jats:sub>x</jats:sub>/ZrO<jats:sub>2</jats:sub> catalyst was investigated in this work. A boosted methanol yield of 4.6 mg/h was obtained over MnO<jats:sub>x</jats:sub>/ZrO<jats:sub>2</jats:sub> catalyst, while it was only 0.0 and 0.7 mg/h for ZrO<jats:sub>2</jats:sub> and MnO<jats:sub>x</jats:sub> catalyst, respectively. The interaction between MnO<jats:sub>x</jats:sub> and ZrO<jats:sub>2</jats:sub> was responsible for the enhanced methanol yield. It resulted in sufficient oxygen vacancy. The in situ DRIFT spectra was conducted to reveal the plasma catalytic CO<jats:sub>2</jats:sub> hydrogenation to methanol reaction mechanism and the key intermediates of HCOO and CH<jats:sub>3</jats:sub>O species were determined. The sufficient oxygen vacancy promoted the formation of the key intermediates, especially the CH<jats:sub>3</jats:sub>O species.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"43 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impedance matching design of capacitively coupled plasma with fluid and external circuit coupled model 带流体和外电路耦合模型的电容耦合等离子体的阻抗匹配设计
IF 3.5 3区 物理与天体物理
Plasma Processes and Polymers Pub Date : 2024-04-06 DOI: 10.1002/ppap.202400017
Lifen Zhao, Shimin Yu, Yu Wang, Zili Chen, Xiangmei Liu, Hongyu Wang, Wei Jiang, Ya Zhang
{"title":"Impedance matching design of capacitively coupled plasma with fluid and external circuit coupled model","authors":"Lifen Zhao, Shimin Yu, Yu Wang, Zili Chen, Xiangmei Liu, Hongyu Wang, Wei Jiang, Ya Zhang","doi":"10.1002/ppap.202400017","DOIUrl":"https://doi.org/10.1002/ppap.202400017","url":null,"abstract":"This paper establishes a fully self‐consistent coupled model of fluid and external circuits. The Kirchhoff equation, the charge conservation equation, and Poisson equation are coupled via boundary conditions and integrated into the fluid model for iterative parameter solution. On the basis of this model, we investigate the influence of impedance matching on single‐frequency capacitively coupled plasma characteristics under different parameters and topological structures. The findings suggest that after several iterations the matching parameters converge. Using different initial circuit parameters, the adjustable capacitance and inductance are eventually adjusted to approximately equal values, resulting in the same optimal matching state, whereas diverse discharge parameters led to different outcomes. Under fixed parameters for two topologies, the power absorption efficiency increases, and the reflection coefficient approaches zero, and the best matching is found. This model can be extended to different fluid programs to investigate the impact of complex external circuits with impedance matching network on plasma discharge while simultaneously seeking best impedance matching.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"25 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large language models for plasma research : Curse or blessing? 用于血浆研究的大型语言模型:诅咒还是祝福?
IF 3.5 3区 物理与天体物理
Plasma Processes and Polymers Pub Date : 2024-04-04 DOI: 10.1002/ppap.202400066
Achim von Keudell
{"title":"Large language models for plasma research : Curse or blessing?","authors":"Achim von Keudell","doi":"10.1002/ppap.202400066","DOIUrl":"https://doi.org/10.1002/ppap.202400066","url":null,"abstract":"Large language models (LLM) such as ChatGPT and others may change the way we do research. These systems serve as a tool for literature searches, data analysis and performing programming tasks. But what are the potentials of LLMs and their shortcomings, especially regarding the very interdisciplinary plasma research?","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"16 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma‐catalytic CO2 methanation over NiO/bentonite catalysts prepared by solution combustion synthesis 溶液燃烧合成法制备的 NiO/膨润土催化剂上的等离子催化二氧化碳甲烷化
IF 3.5 3区 物理与天体物理
Plasma Processes and Polymers Pub Date : 2024-04-04 DOI: 10.1002/ppap.202400001
Shouxian Tang, Shiji Qin, Zhengduo Wang, Lijun Sang, Jiushan Cheng, Zhongwei Liu
{"title":"Plasma‐catalytic CO2 methanation over NiO/bentonite catalysts prepared by solution combustion synthesis","authors":"Shouxian Tang, Shiji Qin, Zhengduo Wang, Lijun Sang, Jiushan Cheng, Zhongwei Liu","doi":"10.1002/ppap.202400001","DOIUrl":"https://doi.org/10.1002/ppap.202400001","url":null,"abstract":"A solution combustion synthesis (SCS) process to prepare nickel catalyst over bentonite (NiO/Ben) is reported. Compared to the traditional impregnation method, NiO/ben produced by SCS has smaller nickel particle size and higher dispersion. With a metal loading of 20 wt%, the afforded NiO/Ben demonstrates excellent catalytic activity for CO<jats:sub>2</jats:sub> methanation in a dielectric barrier discharge reactor. In certain discharge conditions (H<jats:sub>2</jats:sub>:CO<jats:sub>2</jats:sub> ratio of 5 in feed gas, discharge input power of 45 W, and gas hourly space velocity of 11 320 h<jats:sup>−</jats:sup><jats:sup>1</jats:sup>), CO<jats:sub>2</jats:sub> conversion and CH<jats:sub>4</jats:sub> selectivity are as high as 55.8% and 84.6%, respectively. Under the conditions of plasma configuration, the strong interaction between the nickel species and the support plays an important role in the CO<jats:sub>2</jats:sub> methanation process.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"12 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信