{"title":"带流体和外电路耦合模型的电容耦合等离子体的阻抗匹配设计","authors":"Lifen Zhao, Shimin Yu, Yu Wang, Zili Chen, Xiangmei Liu, Hongyu Wang, Wei Jiang, Ya Zhang","doi":"10.1002/ppap.202400017","DOIUrl":null,"url":null,"abstract":"This paper establishes a fully self‐consistent coupled model of fluid and external circuits. The Kirchhoff equation, the charge conservation equation, and Poisson equation are coupled via boundary conditions and integrated into the fluid model for iterative parameter solution. On the basis of this model, we investigate the influence of impedance matching on single‐frequency capacitively coupled plasma characteristics under different parameters and topological structures. The findings suggest that after several iterations the matching parameters converge. Using different initial circuit parameters, the adjustable capacitance and inductance are eventually adjusted to approximately equal values, resulting in the same optimal matching state, whereas diverse discharge parameters led to different outcomes. Under fixed parameters for two topologies, the power absorption efficiency increases, and the reflection coefficient approaches zero, and the best matching is found. This model can be extended to different fluid programs to investigate the impact of complex external circuits with impedance matching network on plasma discharge while simultaneously seeking best impedance matching.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"25 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impedance matching design of capacitively coupled plasma with fluid and external circuit coupled model\",\"authors\":\"Lifen Zhao, Shimin Yu, Yu Wang, Zili Chen, Xiangmei Liu, Hongyu Wang, Wei Jiang, Ya Zhang\",\"doi\":\"10.1002/ppap.202400017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes a fully self‐consistent coupled model of fluid and external circuits. The Kirchhoff equation, the charge conservation equation, and Poisson equation are coupled via boundary conditions and integrated into the fluid model for iterative parameter solution. On the basis of this model, we investigate the influence of impedance matching on single‐frequency capacitively coupled plasma characteristics under different parameters and topological structures. The findings suggest that after several iterations the matching parameters converge. Using different initial circuit parameters, the adjustable capacitance and inductance are eventually adjusted to approximately equal values, resulting in the same optimal matching state, whereas diverse discharge parameters led to different outcomes. Under fixed parameters for two topologies, the power absorption efficiency increases, and the reflection coefficient approaches zero, and the best matching is found. This model can be extended to different fluid programs to investigate the impact of complex external circuits with impedance matching network on plasma discharge while simultaneously seeking best impedance matching.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202400017\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400017","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Impedance matching design of capacitively coupled plasma with fluid and external circuit coupled model
This paper establishes a fully self‐consistent coupled model of fluid and external circuits. The Kirchhoff equation, the charge conservation equation, and Poisson equation are coupled via boundary conditions and integrated into the fluid model for iterative parameter solution. On the basis of this model, we investigate the influence of impedance matching on single‐frequency capacitively coupled plasma characteristics under different parameters and topological structures. The findings suggest that after several iterations the matching parameters converge. Using different initial circuit parameters, the adjustable capacitance and inductance are eventually adjusted to approximately equal values, resulting in the same optimal matching state, whereas diverse discharge parameters led to different outcomes. Under fixed parameters for two topologies, the power absorption efficiency increases, and the reflection coefficient approaches zero, and the best matching is found. This model can be extended to different fluid programs to investigate the impact of complex external circuits with impedance matching network on plasma discharge while simultaneously seeking best impedance matching.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.