Planta medicaPub Date : 2025-09-01Epub Date: 2025-04-22DOI: 10.1055/a-2592-1627
Yi Wang, Kang Chen, Qiao Xing, Tao Zhang, Yuquan Xu
{"title":"Stachybotrins G and H, Two New Phenylspirodrimane Derivatives from the Fungus Stachybotrys chartarum.","authors":"Yi Wang, Kang Chen, Qiao Xing, Tao Zhang, Yuquan Xu","doi":"10.1055/a-2592-1627","DOIUrl":"10.1055/a-2592-1627","url":null,"abstract":"<p><p>Two new phenylspirodrimane derivatives, designated as stachybotrins G and H (1: and 2: ), which feature an <i>N</i>-isobutyl side chain, along with four known analogues (3: -6: ), were isolated from the fungus <i>Stachybotrys chartarum</i>. All the structures were determined through comprehensive spectroscopic analyses, primarily based on HRESIMS and NMR data. The antibacterial activity of all isolated compounds was evaluated. Compound 5: demonstrated antibacterial activity against the Gram-positive bacterium <i>Staphylococcus aureus</i> ATCC 6538, with a minimum inhibitory concentration (MIC) value of 6.25 µg/mL.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":"569-575"},"PeriodicalIF":2.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144027531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antidiabetic Potential of Sophora Species: Mechanisms, Bioactive Constituents, and Therapeutic Prospects.","authors":"Mahdis Mousavi, Mahdi Moridi Farimani, Khosrow Kashfi, Asghar Ghasemi","doi":"10.1055/a-2597-8133","DOIUrl":"10.1055/a-2597-8133","url":null,"abstract":"<p><p>Diabetes is a major global health concern, and achieving optimal glycemic control remains a challenge for many patients. Despite the availability of current antidiabetic medications, about two-thirds of patients worldwide fail to achieve adequate glycemic control, underscoring the need for novel treatments. Herbal medicine has significantly contributed to drug discovery, and <i>Sophora</i>, a genus in the Fabaceae family, has long been used in traditional medicine. Preclinical studies suggest that various chemical constituents of <i>Sophora</i> exhibit antidiabetic properties. This review summarizes <i>in vitro</i> and <i>in vivo</i> evidence on the antidiabetic effects of <i>Sophora,</i> highlighting its active ingredients and mechanisms of action. A literature search was conducted using Web of Science, Scopus, PubMed, and Google Scholar with the keywords '<i>Sophora</i>', 'diabetes', and 'herbal medicine'. Studies indicate that <i>Sophora</i> reduces fasting glucose in type 1 and type 2 diabetes (T2D) by approximately 33% and 37%, respectively. Additionally, it decreases body weight, improves glucose tolerance, reduces insulin resistance, and enhances lipid profiles in T2D. The antidiabetic mechanisms of <i>Sophora</i> involve the activation of phospholipase C-protein kinase C (PLC-PKC), phosphatidylinositol-3-kinase (PI3K)-Akt (PI3K-Akt), and adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathways, leading to enhanced glucose uptake in the skeletal muscle. Furthermore, <i>Sophora</i> activates the PI3K-Akt pathway and inhibits nuclear factor-kappa B (NF<i>κ</i>B), thereby reducing hepatic gluconeogenesis and inflammation. Among its active constituents, flavonoids exhibit the most significant antidiabetic activity. While <i>Sophora</i> holds promise for antidiabetic drug development, further preclinical studies assessing sex differences and long-term safety are required before progressing to human clinical trials.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":"546-557"},"PeriodicalIF":2.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144042437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Neutral Glucan Extracted from Dried Ginger (Zingiberis Rhizoma): Preparation, Structure Characterization, and Immunomodulatory Activity.","authors":"Long Sun, Xing Ni, Yulin Liu, Yantao Jiang, Pei-Pei Wang, Jingdong Gao","doi":"10.1055/a-2574-2730","DOIUrl":"10.1055/a-2574-2730","url":null,"abstract":"<p><p>A neutral glucan, GJ0D, was obtained from dried ginger (Zingiberis rhizoma) by enzymatic extraction and purification with column chromatography. The fine structure of GJ0D was assessed through monosaccharide composition analysis, methylation, and two-dimensional nuclear magnetic resonance. GJ0D has a relative molecular weight of 4.0 KDa and possesses a backbone consisting of 1,4-linked <i>α</i>-Glc<i>p</i> with substitution at C-6 of Glc<i>p</i> by T-Glc<i>p</i>. Immunoactivity assessment showed that GJ0D significantly upregulates the expression of IL-6, IL-1<i>β</i>, and TNF-<i>α</i> in RAW264.7 cells. The reactive oxygen species (ROS) production was also increased in RAW264.7 cells. In addition, the expression of several proteins associated with immune activation signaling pathways including TLR4, the phosphorylation of IKK<i>β</i>, and NF-<i>κ</i>B (p100 and p52) were significantly upregulated by GJ0D. These results suggest that GJ0D could promote inflammation through the TLR4/IKK<i>β</i>/P100 signaling pathway, suggesting a potential application as an immunomodulating agent.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":"558-568"},"PeriodicalIF":2.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143987673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compositional Analysis of Glycyrrhiza uralensis, G. inflata, and G. glabra after Honey Processing, and the Cardioprotective Effects in Zebrafish Embryos.","authors":"Jiayi Wang, Wenxin Wang, Binghan Liu, Xiaoyu Fan, Shucen Liu, Guangchao Yang, Jining Liu, Tulin Lu, Lihong Chen","doi":"10.1055/a-2615-7291","DOIUrl":"10.1055/a-2615-7291","url":null,"abstract":"<p><p>The \"<i>Shang Han Lun</i>\" indicates that honey-processed licorice protects the heart better than raw licorice. Ten major constituents in honey-processed licorice samples were quantified. Protective effects of honey-processed licorices against doxorubicin-induced cardiotoxicity were assessed in zebrafish larvae. Network pharmacology analysis based on the ten target constituents was conducted. Results showed glabridin was lowest in honey-processed <i>Gg</i>, while total content of six components (such as liquiritin) was highest in honey-processed <i>Gu</i>, followed by honey-processed <i>Gi</i>, and lowest in honey-processed <i>Gg</i>. Pharmacological results indicated that honey-processed <i>Gu</i> and <i>Gi</i> significantly improved doxorubicin-induced abnormal pericardial edema and increased venous sinus-arterial bulb distance in larvae. The pericardial area was reduced by 23% and 20%, respectively compared to the model group, and the distances reduced to 81% and 83.3% of the model group, respectively. Although improvements in pericardial edema were rare in the <i>honey-processed Gg</i> group, it reversed venous sinus-arterial bulb distance increase. These results indicate that honey-processed <i>Gu</i> and honey-processed <i>Gi</i> can significantly protect zebrafish embryos against the effects of doxorubicin-induced cardiotoxicity, namely, abnormal heart rate, pericardial edema, and elongation of the venous sinus-arterial bulb distance, whereas honey-processed <i>Gg</i> can only significantly reverse the doxorubicin-induced increase in the venous sinus-arterial bulb distance. Network pharmacology analysis predicted that these constituents have potential for the treatment of metabolic abnormalities and cellular senescence related diseases caused by reactive oxygen species induction, linking to Rap1 pathways. Honey-processed <i>Gu</i> and honey-processed <i>Gi</i> had stronger cardioprotective effects on zebrafish embryos than honey-processed <i>Gg</i> possibly because of differences in composition.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":"599-608"},"PeriodicalIF":2.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144266951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Planta medicaPub Date : 2025-08-22DOI: 10.1055/a-2665-2226
Hin Yee Thew, Yong Chiang Tan, Yong Sze Ong, Bey Hing Goh, Kooi Yeong Khaw
{"title":"A Systematic Review of Neuroprotective Effects of Mangosteen and its Xanthones Against Oxidative Stress and Inflammation.","authors":"Hin Yee Thew, Yong Chiang Tan, Yong Sze Ong, Bey Hing Goh, Kooi Yeong Khaw","doi":"10.1055/a-2665-2226","DOIUrl":"https://doi.org/10.1055/a-2665-2226","url":null,"abstract":"<p><p>Mangosteen has garnered increasing attention for its medicinal properties against oxidative stress and inflammation-two major causative and progressive agents of neurodegenerative diseases. This systematic review explores the antioxidative and anti-inflammatory effects of mangosteen crude extracts and their purified bioactive compounds, highlighting their neuroprotective potential against neurodegenerative conditions.The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) strategy was used to identify studies published in English up to July 2024 across five databases (Cochrane, PubMed, Scopus, Web of Science, and Google Scholar). The Population, Intervention, Comparison, and Outcome (PICO) framework guided the search strategy, and duplicate records were removed using Covidence software. Of the 149 studies screened, 40 met the predefined inclusion criteria and were included in the review. The quality of the included studies was assessed using criteria adapted from the Cochrane Handbook, focusing on risk of bias and methodological rigor.Mangosteen extract and xanthones consistently reduced oxidative markers in various models. Anti-inflammatory effects were evident as mangosteen extract reduced pro-inflammatory cytokines and modulated the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-<i>κ</i>B) and cyclooxygenase-2 (COX-2) pathways in neuroinflammation models. Xanthones further suppressed inflammatory mediators and enhanced cellular resilience.The <i>in vitro</i> and <i>in vivo</i> results suggested the neuroprotective capabilities of mangosteen extracts and its purified bioactives. Despite that, gaps remain in understanding the potential synergistic effects of these bioactives, their druggability properties, and clinical applicability. Further research, especially clinical trials, will be necessary to further impel mangosteen and its derivatives into therapeutic applications.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144964966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Planta medicaPub Date : 2025-08-22DOI: 10.1055/a-2662-9672
Stef Lauwers, Melissa Van Praet, Bieke Steenput, Anne-Sophie Weyns, Cédric H G Neutel, Emmy Tuenter, Nina Hermans, Lynn Roth
{"title":"The Olive Polyphenol Hydroxytyrosol Enhances Autophagy and Heme Oxygenase-1 Expression in Aortic Endothelial Cells and Reduces Arterial Stiffness ex vivo.","authors":"Stef Lauwers, Melissa Van Praet, Bieke Steenput, Anne-Sophie Weyns, Cédric H G Neutel, Emmy Tuenter, Nina Hermans, Lynn Roth","doi":"10.1055/a-2662-9672","DOIUrl":"https://doi.org/10.1055/a-2662-9672","url":null,"abstract":"<p><p>Age-related arterial stiffening is a hallmark of vascular ageing and a key driver of cardiovascular disease. Oxidative stress, impaired autophagy, and extracellular matrix remodelling play an important role in the progression of aortic stiffening. Hydroxytyrosol (HT), a phenolic compound in olives, has demonstrated antioxidant properties and the ability to modulate autophagy, positioning it as a potential therapeutic for vascular ageing. In this study, we investigated the effects of HT on autophagy flux and antioxidant protein expression in human aortic endothelial cells (HAoECs). In parallel, we examined the impact of HT on arterial stiffness <i>ex vivo</i> using isolated aortic segments from wild-type (WT) and <i>Fbn1C1039G+/-</i> mice, a model of elastin fragmentation.HT treatment (50 and 100 µM; 18 h) enhanced autophagy flux in HAoECs, evidenced by increased LC3-II and p62 turnover, and reduced mTOR activity. Additionally, HT upregulated heme oxygenase-1 (HO-1), a key antioxidant enzyme. <i>Ex vivo</i> treatment of aortic segments from WT and <i>Fbn1C1039G+/-</i> mice with HT (50 µM; 18 h) restored IP<sub>3</sub>-mediated contractions and reduced aortic stiffness in <i>Fbn1C1039G+/-</i> aortas, as demonstrated by a decreased Peterson's modulus. Although HT did not significantly affect collagen or elastin content or elastic fibre breaks in the aortic wall, it notably increased HO-1 protein levels in <i>Fbn1C1039G+/-</i> aortas.These findings demonstrate the potential of HT to mitigate oxidative stress, enhance autophagy, and reduce arterial stiffness, making it a promising nutraceutical for addressing age-related vascular dysfunction. Further long-term studies are needed to elucidate the molecular mechanisms and evaluate its sustained benefits <i>in vivo</i>.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144965105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Planta medicaPub Date : 2025-08-12DOI: 10.1055/a-2635-4268
Campili Mendes, Jéssica Raquel Borges Monteiro, Rodrigo de Almeida Romagna, Aliny Rodrigues de Jesus da Conceição, Pedro Henrique Tregnago, Amanda Eiriz Feu, Rita de Cássia Ribeiro Gonçalves, Warley de Souza Borges, Ricardo Machado Kuster, Rodrigo Rezende Kitagawa
{"title":"In silico and In vitro Screening of Medicinal Plants from Brazilian Traditional Medicine for Anti-Helicobacter pylori Activity.","authors":"Campili Mendes, Jéssica Raquel Borges Monteiro, Rodrigo de Almeida Romagna, Aliny Rodrigues de Jesus da Conceição, Pedro Henrique Tregnago, Amanda Eiriz Feu, Rita de Cássia Ribeiro Gonçalves, Warley de Souza Borges, Ricardo Machado Kuster, Rodrigo Rezende Kitagawa","doi":"10.1055/a-2635-4268","DOIUrl":"10.1055/a-2635-4268","url":null,"abstract":"<p><p>Medicinal plants and their phytocompounds are valuable shortcuts for discovering new, safer biologically active compounds or herbal medicines with reduced adverse effects. In this study, medicinal plant species were initially selected from Brazilian traditional medicine using a database of <i>in silico</i> and <i>in vitro</i> studies. A virtual screening study was carried out with a phytochemical database previously reported in the literature. The biological activity was evaluated <i>in silico</i> by PASS Online and molecular docking, then validated by <i>in vitro</i> anti-<i>Helicobacter pylori</i> assay. The chemical profile of the species was obtained by ESI(±)FT-ICR MS and LC-MS-DAD analysis. <i>Vernonia condensata, Bauhinia forficata, Jatropha gossypiifolia</i>, and <i>Sonalum paniculatum</i> were selected based on a survey of the literature for use of gastric diseases and anti-<i>Helicobacter pylori</i> potential. After PASS analysis, <i>Jatropha gossypiifolia</i> was selected for <i>in vitro</i> study because its compounds showed anti-<i>H. pylori</i> activity potential, inhibiting fumarate reductase enzyme. <i>J. gossypiifolia</i> extracted showed MIC of 64 µg/mL and MBC of 128 µg/mL in the <i>in vitro</i> anti-<i>H. pylori</i> assay. ESI(±)FT-ICR MS and LC-MS-DAD analysis showed compounds such as luteolin (1: ), isovitexin (2: ), luteolin-7-O-glucoside (3: ), isoorientin (4: ), and 3-genistein-8-C-glucoside (5: ). Molecular docking analysis showed a potential interaction of compounds in the enzyme active site such as hydrogen bonds with Arg404 and a similar interaction to fumaric acid, except for isoorientin (4: ). <i>J. gossypiifolia</i> showed promising activity and may represent a future alternative to treat <i>H. pylori</i> infections and their deleterious effects, reinforcing the therapeutic potential of this plant.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144294784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Planta medicaPub Date : 2025-08-12DOI: 10.1055/a-2659-7263
Anu Gupta, M Vasundhara
{"title":"Withanolides as Prospective Drug Candidates: Production and Therapeutic Applications-A Review.","authors":"Anu Gupta, M Vasundhara","doi":"10.1055/a-2659-7263","DOIUrl":"10.1055/a-2659-7263","url":null,"abstract":"<p><p>Withanolides are a group of steroidal lactones predominantly present in the genus '<i>Withania</i>'. These compounds exhibit cytotoxic, neurological, immunomodulatory, and anti-inflammatory activities. Structural diversity leads to various kinds of withanolides with different biological functionality. There is an increasing market demand for withanolides as they exhibit great therapeutic potential and can be explored for developing novel drug entities. Withanolides are primarily produced from plants that are more prone to diseases and are on the verge of endangerment. From the plant sources, the yield of withanolides is meagre (0.5 - 2%), which cannot meet the market demand, and the production cost is very high. This leads to the exploration of an alternative sustainable source for withanolide production. Endophytic fungi can produce host plant metabolites and can be investigated as an alternative source for withanolides production. Endophytic fungi can be isolated from the host plant species producing withanolides and cultured further for production. Studying the genes of the withanolides' biosynthetic pathway (their upregulation or downregulation), media optimisation, co-culture, and various elicitors may enhance withanolides production. <i>In silico</i> approaches like molecular docking and quantitative structure-activity relationship studies may also aid in understanding the mechanism of action of withanolides on a specific target to cure a disease. Nanotechnology techniques help in designing the formulation of withanolides so that they can cross the blood-brain barrier and improve therapeutic effectiveness. This article highlights the biochemistry, biosynthetic pathway, mode of action, therapeutic potential of withanolides, and exploration of endophytic fungi as an alternative source to produce withanolides cost-effectively.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144668185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Planta medicaPub Date : 2025-08-08DOI: 10.1055/a-2665-2211
Priyanka Singh, Poonam Kushwaha, Mohammad Ahmad, Atif Husain
{"title":"Therapeutic Potential of Carnosic Acid in Alopecia: A Mechanistic Perspective.","authors":"Priyanka Singh, Poonam Kushwaha, Mohammad Ahmad, Atif Husain","doi":"10.1055/a-2665-2211","DOIUrl":"https://doi.org/10.1055/a-2665-2211","url":null,"abstract":"<p><p>Alopecia, characterised by partial or complete hair loss, significantly affects the psychological and social well-being of individuals. Current FDA-approved treatments, such as topical minoxidil and oral finasteride, often present limitations, including skin irritation and suboptimal efficacy, compromising patient adherence. In recent years, natural compounds have garnered attention as potential alternatives, with carnosic acid emerging as a promising candidate due to its multifaceted biological activities. Carnosic acid, a diterpenic polyphenol predominantly found in rosemary (<i>Rosmarinus officinalis</i>) and sage (<i>Salvia officinalis</i>), exhibits potent antioxidant, anti-inflammatory, anti-androgenic, neuroprotective, and hair follicle-regenerative properties. Despite its therapeutic potential, its poor solubility and stability in conventional formulations limit its clinical application. This review comprehensively explores the mechanisms through which carnosic acid exerts its effects in alopecia management, focusing on its antioxidant capacity, anti-inflammatory responses, inhibition of dihydrotestosterone activity, promotion of hair follicle regeneration, and neuroprotective actions. The findings highlight carnosic acid's potential as a natural, effective, and safer alternative for alopecia treatment.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144804480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}