Phytochemical Analysis最新文献

筛选
英文 中文
Dual Assay Validation of Rosmarinus officinalis Extract as an Inhibitor of SARS-CoV-2 Spike Protein: Combining Pseudovirus Testing, Yeast Two-Hybrid, and UPLC-Q Exactive Orbitrap-MS Profiling. 将迷迭香提取物作为 SARS-CoV-2 Spike 蛋白抑制剂的双重测定验证:结合假病毒测试、酵母双杂交和UPLC-Q Exactive Orbitrap-MS分析。
IF 3 3区 生物学
Phytochemical Analysis Pub Date : 2024-11-13 DOI: 10.1002/pca.3467
Yujing Huang, Rufeng Luo, Chenjing Tian, Duntao Zu, Jianni Yang, Wenlin Chen, Dingqiang Huang, Siyan Duan, Shunxin Yan, Yujia Yuan, Shengrong Li, Haibo Zhou, Fulong Lin, Qinghui He, Junxia Zheng
{"title":"Dual Assay Validation of Rosmarinus officinalis Extract as an Inhibitor of SARS-CoV-2 Spike Protein: Combining Pseudovirus Testing, Yeast Two-Hybrid, and UPLC-Q Exactive Orbitrap-MS Profiling.","authors":"Yujing Huang, Rufeng Luo, Chenjing Tian, Duntao Zu, Jianni Yang, Wenlin Chen, Dingqiang Huang, Siyan Duan, Shunxin Yan, Yujia Yuan, Shengrong Li, Haibo Zhou, Fulong Lin, Qinghui He, Junxia Zheng","doi":"10.1002/pca.3467","DOIUrl":"https://doi.org/10.1002/pca.3467","url":null,"abstract":"<p><strong>Introduction: </strong>This study evaluates the effectiveness of Traditional Chinese Medicine (TCM) extracts in blocking the interaction between the SARS-CoV-2 Spike protein and human ACE2 receptor, utilizing a dual-method approach to explore the antiviral potential of natural compounds.</p><p><strong>Objectives: </strong>This work aims to evaluate the capability of TCM extracts in inhibiting the SARS-CoV-2 Spike protein and ACE2 receptor interaction using advanced biochemical assays.</p><p><strong>Methods: </strong>A dual-method screening approach was utilized, beginning with a pseudovirus assay to assess the inhibition capabilities of TCM extracts in vitro, followed by a split-ubiquitin yeast two-hybrid (Y2H) system to validate interactions in live cells. Active compounds were characterized and quantified using UPLC-Q-Exactive-Orbitrap-MS.</p><p><strong>Results: </strong>Among the 91 TCM extracts tested, Rosmarinus officinalis exhibited the most potent inhibition in both pseudovirus and Y2H assays, significantly reducing viral entry and disrupting the Spike-ACE2 interaction. Comprehensive chemical profiling via UPLC-Q-Exactive-Orbitrap-MS identified 132 compounds, including phenolics, flavonoids, and terpenoids.</p><p><strong>Conclusion: </strong>This research validates the use of TCM extracts in viral inhibition strategies, demonstrating the utility of integrating traditional remedies with modern scientific approaches to discover new therapeutic agents.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating Metabolomic Analysis, Network Pharmacology, and Molecular Docking to Underlying Pharmacological Mechanism and Ethnobotanical Rationalization for Diabetes Mellitus: Study on Medicinal Plant Fibraurea tinctoria Lour. 将代谢组学分析、网络药理学和分子对接整合到糖尿病的基本药理机制和民族植物学合理化中:对药用植物 Fibraurea tinctoria Lour 的研究
IF 3 3区 生物学
Phytochemical Analysis Pub Date : 2024-11-13 DOI: 10.1002/pca.3477
Abdul Halim Umar, Septina Asih Widuri, Yohana Caecilia Sulistyaningsih, Diah Ratnadewi
{"title":"Integrating Metabolomic Analysis, Network Pharmacology, and Molecular Docking to Underlying Pharmacological Mechanism and Ethnobotanical Rationalization for Diabetes Mellitus: Study on Medicinal Plant Fibraurea tinctoria Lour.","authors":"Abdul Halim Umar, Septina Asih Widuri, Yohana Caecilia Sulistyaningsih, Diah Ratnadewi","doi":"10.1002/pca.3477","DOIUrl":"https://doi.org/10.1002/pca.3477","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Fibraurea tinctoria Lour. has long been used in traditional medicine to treat diabetes mellitus (DM). However, a comprehensive scientific understanding of its potential active compounds and underlying pharmacological mechanisms still needs to be unveiled.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Objective: &lt;/strong&gt;This study, therefore, presents a novel approach by integrating metabolomic profiling, pharmacological network, and molecular docking analysis to investigate the potential of F. tinctoria as antidiabetes mellitus.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;Active compounds were obtained through analysis using ultrahigh-performance liquid chromatography-quadrupole-orbital ion trap-high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) and screening of active compounds using Lipinski rule of five and ADMET parameters. Potential targets of F. tinctoria compounds and DM-related targets were retrieved from public databases, such as DisGeNET, GeneCards, OMIM, PharmaGKB, and TTD. The targets' gene ontology (GO) was created using DAVID and protein-protein interactions using STRING. The plant-organ-compound-target-disease network was constructed using Cytoscape. Then, molecular docking analysis predicted and verified the interactions of essential bioactive compounds of F. tinctoria and DM core targets.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;The network pharmacology approach identified 35 active compounds, 565 compound-related targets, and 17,289 DM-related targets. EGFR, HSP90AA1, ESR1, HSP90AB1, and GSK3B were the core targets, whereas isolariciresinol, cubebin, corypalmine, (-)-8-oxocanadine, and (+)-N-methylcoclaurine were the most active compounds of F. tinctoria with DM potential. GO functional enrichment analysis revealed 483 biological processes, 485 cellular components, and 463 molecular functions. REACTOME pathway enrichment analysis yielded 463 significantly enriched signaling pathways. Of these pathways, the cytokine signaling in the immune system pathway may play a key role in treating DM. The results of molecular docking analysis showed that the core targets of DM, such as 5gnk, 3o0i, 6psj, 5ucj, and 1q5k, bind stably to the analyzed bioactive compounds of F. tinctoria.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;This study provides significant insights into the potential mechanism of F. tinctoria in treating DM. The main active compounds of F. tinctoria were found to interact with the core targets (EGFR, HSP90AA1, ESR1, HSP90AB1, and GSK3B) through the cytokine signaling pathway in the immune system, suggesting a potential therapeutic pathway for DM. However, it is essential to note that these findings are preliminary, and further research is necessary to validate them. Those research studies could involve in vitro and in vivo studies to confirm the bioactivity of the identified compounds and their interactions with the core targets. When the findings are confirmed, they could have significant clinical implications, potentially leading to develop","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Nordaucane Sesquiterpenoid and Sesquiterpene Lactone From Laserpitium Species: Isolation, Structure Elucidation, In Vitro, In Vivo, and In Silico Evaluation as Anticancer Agents. 从镭射蝮蛇种中提取的新型Nordaucane倍半萜和倍半萜内酯:作为抗癌剂的分离、结构阐明、体外、体内和硅学评估。
IF 3 3区 生物学
Phytochemical Analysis Pub Date : 2024-11-12 DOI: 10.1002/pca.3472
Meltem Güleç, Halil Şenol, Nur Tan
{"title":"Novel Nordaucane Sesquiterpenoid and Sesquiterpene Lactone From Laserpitium Species: Isolation, Structure Elucidation, In Vitro, In Vivo, and In Silico Evaluation as Anticancer Agents.","authors":"Meltem Güleç, Halil Şenol, Nur Tan","doi":"10.1002/pca.3472","DOIUrl":"https://doi.org/10.1002/pca.3472","url":null,"abstract":"<p><strong>Introduction: </strong>This study explores the cytotoxic activity-guided isolation of the underground parts of Laserpitium hispidum M. Bieb and Laserpitium petrophilum Boiss. & Heldr., which have not been previously investigated.</p><p><strong>Objectives: </strong>The aim is to isolate and evaluate bioactive compounds from Laserpitium L. species with anticancer potential.</p><p><strong>Material and methods: </strong>This study involves bioactivity-guided isolation and structural studies of the pure compounds utilizing NMR, UV-Vis, IR spectroscopies, and HRMS. The cytotoxic activity of the isolated compounds was evaluated in vitro and in vivo, whereas molecular modeling, docking, and ADME predictions were conducted using Schrödinger software.</p><p><strong>Results: </strong>The study isolated phenylpropanoids (laserine (1), latifolone (2), myristicin (3)), sterol (stigmasterol (4)), polyenes (falcarindiol (5)), sesquiterpene lactone (11-hydroxybadkhyzin (6)), and nordaucane sesquiterpene (norlasidiol angelate (7)) from L. hispidum, whereas L. petrophilum yielded 10β-acetoxy-8α-angeloyloxy-6αH,7αH-guaian-3-en-12,6-olide (8), 10β-acetoxy-8α-senecioyloxy-6αH,7αH-guaian-3-en-6,12-olide (9) and acetylisomontanolide (10). Molecular docking simulations revealed stable interactions between compounds 7 and 9 with estrogen receptor α (ERα) and vascular endothelial growth factor receptor 2 (VEGFR2), with compound 7 showing superior stability and binding affinity. In silico ADME predictions indicated favorable pharmacokinetic properties, including high oral absorption.</p><p><strong>Conclusion: </strong>Compounds 7 and 9, representing new nordaucane and sesquiterpene lactones, have not been previously reported. In vitro cytotoxicity revealed that compound 7 exhibits potent anti-cancer activity against MCF-7 cells, whereas compound 9 showed reduced cytotoxicity. In vivo testing in Caenorhabditis elegans supported these findings, suggesting safety and efficacy in organisms. In silico results emphasize the potential of these compounds, with compound 7 promising due to its stability and strong binding affinity.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pine Needle of Pinus koraiensis (Siebold & Zucc) Essential Oil Through Liquid Nitrogen Quick-Freezing Assisted Solvent-Free Microwave Extraction Process for Antibacterial Application. 通过液氮速冻辅助无溶剂微波萃取工艺提取松针精油用于抗菌。
IF 3 3区 生物学
Phytochemical Analysis Pub Date : 2024-11-12 DOI: 10.1002/pca.3470
Shuai Yu, Shengtao Ma, Qiuling Wang, Zhifei Chen, Gaolei Xi, Nan An, Hanning Yao, Tao Jia, Xiuhua Zhao, Lei Yang
{"title":"Pine Needle of Pinus koraiensis (Siebold & Zucc) Essential Oil Through Liquid Nitrogen Quick-Freezing Assisted Solvent-Free Microwave Extraction Process for Antibacterial Application.","authors":"Shuai Yu, Shengtao Ma, Qiuling Wang, Zhifei Chen, Gaolei Xi, Nan An, Hanning Yao, Tao Jia, Xiuhua Zhao, Lei Yang","doi":"10.1002/pca.3470","DOIUrl":"https://doi.org/10.1002/pca.3470","url":null,"abstract":"<p><strong>Introduction: </strong>This study investigates the composition and antibacterial properties of essential oil extracted from Pinus koraiensis (Siebold & Zucc) pine needles using a liquid nitrogen freezing treatment combined with solvent-free microwave extraction (LNSFM).</p><p><strong>Objective: </strong>The aim is to develop a low-energy, high-efficiency extraction method for conifer essential oils, analyze their chemical composition, and evaluate their antibacterial efficacy.</p><p><strong>Methodology: </strong>Pine needle samples were frozen with liquid nitrogen and subsequently crushed. The essential oil was extracted using solvent-free microwave technology. A single-factor test and response surface methodology were employed to optimize extraction parameters. The extraction efficiency of LNSFM was compared with traditional methods through kinetics, and the essential oil components were analyzed using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the extracted volatile oil was tested against Escherichia coli and Staphylococcus aureus.</p><p><strong>Conclusion: </strong>LNSFM proves to be a green and efficient extraction method suitable for obtaining volatile oils from pine needles, which demonstrate significant antibacterial properties.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening Anti-Rheumatoid Arthritis Synovitis Effective Ingredients of Total Flavonoid From Artemisia argyi Folium Based on Spectrum-Effect Relationship. 基于谱效关系筛选青蒿叶总黄酮的抗类风湿关节炎滑膜炎有效成分
IF 3 3区 生物学
Phytochemical Analysis Pub Date : 2024-11-12 DOI: 10.1002/pca.3479
Yu Shi, Yueyue Lei, Shiwen Guo, Lujun Li, Xu Li, Xinyi Liu, Shuiping Ding
{"title":"Screening Anti-Rheumatoid Arthritis Synovitis Effective Ingredients of Total Flavonoid From Artemisia argyi Folium Based on Spectrum-Effect Relationship.","authors":"Yu Shi, Yueyue Lei, Shiwen Guo, Lujun Li, Xu Li, Xinyi Liu, Shuiping Ding","doi":"10.1002/pca.3479","DOIUrl":"https://doi.org/10.1002/pca.3479","url":null,"abstract":"<p><strong>Introduction: </strong>Flavonoids are the main nonvolatile component responsible for the anti-rheumatoid arthritis (RA) synovitis activities of Artemisia argyi Folium. However, the effective ingredient remains unidentified. Spectrum-effect relationships analysis was a reliable and efficient strategy for herbal effective ingredient discovery.</p><p><strong>Objectives: </strong>This study aimed to screen the effective ingredients within the total flavonoid from Artemisia argyi Folium (TFAA) that exhibit anti-RA synovitis activities based on spectrum-effect relationship.</p><p><strong>Methods: </strong>TFAA was obtained through ethanol extraction and subsequent purification with D101 resin from 15 distinct batches of Artemisia argyi Folium. The fingerprint of TFAA was established using HPLC, and its efficacy against RA synovitis was evaluated by determining the inhibition rate of nitric oxide (NO) on MH7A synovioblast induced by TNF-α. Common peaks were identified using HPLC-MS/MS and authentic standards. The spectrum-effect relationships between the fingerprints and efficacy were analyzed by gray relational analysis (GRA), canonical correlation analysis (CCA), and partial least squares regression analysis (PLSR) to pinpoint the peaks responsible for the anti-RA synovitis activity, and the results were further verified by in vitro anti-RA synovitis experiments and molecular docking studies.</p><p><strong>Results: </strong>The fingerprint revealed 14 common peaks, and 12 compounds were identified, including four caffeoylquinic acids and eight flavonoids. Among them, five flavonoids-X10 (hispidulin), X11 (jaceosidin), X12 (centaureidin), X13 (eupatilin), and X14 (casticin)-were highly relevant to anti-RA synovitis activity. Verification experiments confirmed their inhibitory effect on NO production and cytokine secretion in MH7A cells, showing anti-RA synovitis potential, which was consistent with the established spectrum effect relationship. The underlying mechanism might be related to the inhibition of iNOS.</p><p><strong>Conclusion: </strong>Hispidulin, jaceosidin, centaureidin, eupatilin, and casticin were the key effective ingredient of TFAA responsible for its anti-RA synovitis effects. These compounds can serve as quality control markers for Artemisia argyi Folium and as lead compounds for anti-RA synovitis treatment.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Integrative Strategy for Discriminating Quality Markers of Tibetan Medicine Chebulae Fructus Based on Multidimensional Feature Network. 基于多维特征网络的藏药诃子质量标记综合判别策略
IF 3 3区 生物学
Phytochemical Analysis Pub Date : 2024-11-10 DOI: 10.1002/pca.3463
Qian-Qian Li, Juan Chen
{"title":"An Integrative Strategy for Discriminating Quality Markers of Tibetan Medicine Chebulae Fructus Based on Multidimensional Feature Network.","authors":"Qian-Qian Li, Juan Chen","doi":"10.1002/pca.3463","DOIUrl":"https://doi.org/10.1002/pca.3463","url":null,"abstract":"<p><p>Chebulae Fructus (TCF) is a traditional Chinese medicine and Tibetan medicine with high medicinal value, but its quality control indicators still need clarification. In this study, a strategy was proposed to specify the quality markers (Q-markers) of TCF by constructing a multidimensional feature network that includes dimensions of effectiveness, content, traceability, and specificity. Network pharmacology analysis was performed to validate the effectiveness of the chemical constituents in TCF through creating a TCF-component-disease-target-pathway network. By combining fingerprints analysis with UPLC-QTOF-MS, 17 differential components were identified among 19 batches of TCF samples. Serum pharmacochemical analysis on rats identified seven prototype components absorbed into the blood. The scores for the four dimensions were calculated using these identified components as candidates, and a multidimensional feature network based on the \"spider-web\" model was constructed. Ultimately, chebulinic acid, ellagic acid, chebulagic acid, methyl gallate, gallic acid, chebulic acid, and trigalloylglucose were clarified as Q-markers of TCF. These Q-markers screened out in this study are closely linked to the efficacy of TCF and can serve as indicator components for quality control of TCF.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced HPTLC Method Development for Silibinin Analysis in Nanoformulated Scaffolds: A Box-Behnken Approach. 用于纳米配方支架中 Silibinin 分析的先进 HPTLC 方法开发:方框-贝肯方法
IF 3 3区 生物学
Phytochemical Analysis Pub Date : 2024-11-09 DOI: 10.1002/pca.3474
Melvin Vincent Dsouza, Suneel Dodamani, Bhaskar Kurangi, Priya Shetti, Sachin Gudasi
{"title":"Advanced HPTLC Method Development for Silibinin Analysis in Nanoformulated Scaffolds: A Box-Behnken Approach.","authors":"Melvin Vincent Dsouza, Suneel Dodamani, Bhaskar Kurangi, Priya Shetti, Sachin Gudasi","doi":"10.1002/pca.3474","DOIUrl":"https://doi.org/10.1002/pca.3474","url":null,"abstract":"<p><strong>Introduction: </strong>Silibinin (silybin), a bioactive component derived from the seeds of milk thistle (Silybum marianum), is recognized for its diverse pharmacological properties, including antioxidant, anti-inflammatory, and hepatoprotective effects. Given its therapeutic significance, accurately quantifying silybin in various formulations is essential. High-performance thin-layer chromatography (HPTLC) is a powerful analytical technique frequently used for this purpose. In this study, an HPTLC method was validated according to the International Council for Harmonization (ICH) guidelines to determine the concentration of silybin. The design of experiments (DoE), specifically the Box-Behnken design, was employed to optimize and understand the influence of critical method variables.</p><p><strong>Methodology: </strong>The HPTLC method validation was performed using silica gel F254 HPTLC plates. The variables investigated included the composition of the mobile phase (% v/v), saturation time (minutes), and temperature in degree Celsius (°C), with the Box-Behnken design for optimization. The mobile phase consisted of chloroform, acetone, and formic acid in a 7:2:1 (v/v) ratio. Both the formulated scaffold and standard drug were applied to the plates, which were then processed in a twin chamber. After development, the plates were scanned at 288 nm using the Camag TLC Scanner IV with Vision CATS software.</p><p><strong>Results: </strong>The validated HPTLC method demonstrated a strong linear relationship within the silybin concentration range of 2-10 μg/mL. The limit of detection (LOD) and limit of quantification (LOQ) for silybin were determined to be 0.469 and 1.423 μg/mL, respectively. Recovery studies indicated that the method provided accurate quantification, with recovery rates ranging from 97.53% to 99.82%. These results confirm the method's high accuracy, outstanding linearity, and reliability for the quantification of silybin in formulations.</p><p><strong>Conclusion: </strong>The validated HPTLC method proved to be a reliable analytical tool for the quantification of silybin in various formulations, particularly those containing polymers. The method's strong linearity, precision, and accuracy align with the ICH guidelines, making it suitable for routine analysis in quality control laboratories. The use of the Box-Behnken design for method optimization highlights the importance of systematic experimentation in achieving robust analytical outcomes.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolite Profiling and Integrated Network Pharmacology Based Mechanism of Benincasa hispida (Thunb.) Cogn. Fruit Against Non-insulin-Dependent Diabetes Mellitus. 基于代谢物分析和综合网络药理学的 Benincasa hispida (Thunb.) Cogn.果对非胰岛素依赖型糖尿病的作用机制。
IF 3 3区 生物学
Phytochemical Analysis Pub Date : 2024-11-07 DOI: 10.1002/pca.3476
Barun Das Gupta, Amit Kar, Seha Singha, Srijon Gayen, Sandipan Jana, Nanaocha Sharma, Pallab K Haldar, Pulok Kumar Mukherjee
{"title":"Metabolite Profiling and Integrated Network Pharmacology Based Mechanism of Benincasa hispida (Thunb.) Cogn. Fruit Against Non-insulin-Dependent Diabetes Mellitus.","authors":"Barun Das Gupta, Amit Kar, Seha Singha, Srijon Gayen, Sandipan Jana, Nanaocha Sharma, Pallab K Haldar, Pulok Kumar Mukherjee","doi":"10.1002/pca.3476","DOIUrl":"https://doi.org/10.1002/pca.3476","url":null,"abstract":"<p><strong>Introduction: </strong>Benincasa hispida (Thunb.) Cogn. (Cucurbitaceae) is an essential food plant in India possessing antihyperglycemic and antihyperlipidemic activities.</p><p><strong>Objective: </strong>The objective included comparative estimation of α-glucosidase and α-amylase enzyme inhibition potential of B. hispida fractions prepared by microwave-assisted extraction and prediction of metabolite interaction against non-insulin-dependent diabetes mellitus by metabolite profiling based network pharmacology analysis.</p><p><strong>Methods: </strong>A validated microwave-assisted extraction method was employed to obtain different fractions of B. hispida fruits. The in vitro enzyme assay was done with p-nitrophenyl-α-D-glucopyranoside and acarbose as standard to evaluate antidiabetic potential. The phytomolecules present in the active fraction were identified by UHPLC-QToF-MS/MS analysis. Network pharmacology analysis gave possible gene and disease association, combination synergy network, and predicted probable mechanism of action.</p><p><strong>Results: </strong>The highest enzyme inhibition potential (IC<sub>50</sub>) was shown by the ethyl acetate fraction (0.546 ± 0.17 mg/mL and 1.134 ± 0.42 mg/mL) compared to acarbose (0.298 ± 0.08 mg/mL and 0.532 ± 0.38 mg/mL), respectively, for α-glucosidase and α-amylase addressing the potential role in ameliorating non-insulin-dependent diabetes mellitus. Metabolite profiling resulted in the identification of 17 metabolites, and a synergy between the identified molecules suggested multimolecule action in the amelioration of non-insulin-dependent diabetes mellitus through insulin resistance pathway, AMPK signaling pathway, PPAR signaling pathway, and PI3K-Akt signaling pathway. Combination synergy of identified molecules was observed through a multitarget approach to manage non-insulin-dependent diabetes mellitus.</p><p><strong>Conclusion: </strong>Polyphenol-enriched fraction of B. hispida fruits and identified phytocompounds ameliorate non-insulin-dependent diabetes mellitus. Thus, enriched extract of B. hispida can be further investigated in order to develop high-quality, safe, and effective products for the management of non-insulin-dependent diabetes mellitus.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qualitative Analysis of Daphnane Diterpenoids in Various Parts of Daphne pontica L. by UHPLC-Q-Exactive-Orbitrap MS. 超高效液相色谱-Q-Exactive-轨道质谱法定性分析 Daphnane pontica L. 不同部位中的 Daphnane Diterpenoids。
IF 3 3区 生物学
Phytochemical Analysis Pub Date : 2024-11-07 DOI: 10.1002/pca.3469
Alev Onder, Kouharu Otsuki, Mi Zhang, Eda Avci, Takashi Kikuchi, Wei Li
{"title":"Qualitative Analysis of Daphnane Diterpenoids in Various Parts of Daphne pontica L. by UHPLC-Q-Exactive-Orbitrap MS.","authors":"Alev Onder, Kouharu Otsuki, Mi Zhang, Eda Avci, Takashi Kikuchi, Wei Li","doi":"10.1002/pca.3469","DOIUrl":"https://doi.org/10.1002/pca.3469","url":null,"abstract":"<p><strong>Introduction: </strong>Daphne pontica L. is an evergreen shrub that is recorded as an anti-diarrheic plant in Turkish folk medicine. Previous studies on D. pontica have reported, albeit slightly, the isolation of daphnane diterpenoids, but no systematic phytochemical analysis of daphnane diterpenoids has been conducted.</p><p><strong>Objective: </strong>This study aimed to comprehensively investigate daphnane diterpenoids in the extracts from the different parts (stems, leaves, and fruits) of D. pontica.</p><p><strong>Methods: </strong>An ultra-high-performance liquid chromatography coupled with Q-Exactive hybrid quadrupole Orbitrap mass spectrometer (UHPLC-Q-Exactive-Orbitrap MS) was used for the qualitative analysis of D. pontica. The stems, leaves, and fruits of D. pontica were extracted with diethyl ether. Each extract was then pretreated by a solid phase extraction cartridge and subjected to LC-MS/MS analysis. Detected daphnane diterpenoids were tentatively identified by comparison with an in-house daphnane library, and their chemical structures were estimated in detail by MS/MS fragmentation evaluation.</p><p><strong>Results: </strong>A total of 33 kinds of daphnanes were identified from the different parts of D. pontica, and were classified into three subtypes: daphnane orthoester, polyhydroxy daphnane, and macrocyclic daphnane orthoester. Among them, six daphnanes were postulated to be previously unreported compounds based on MS/MS fragmentation elucidation. Furthermore, the three plant parts showed similar daphnane diterpenoid profiles, with the stems containing the most abundant daphnane diterpenoids.</p><p><strong>Conclusion: </strong>This is the first study to perform qualitative analysis of daphnane diterpenoids systematically and comprehensively in different parts of D. pontica. The results revealed that D. pontica is a plant resource rich in a variety of daphnane diterpenoids.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Mechanism of Raspberry (Rubi fructus) in Treating Type 2 Diabetes Based on UPLC-Q-Exactive Orbitrap MS, Network Pharmacology, and Experimental Validation. 基于 UPLC-Q-Exactive Orbitrap MS、网络药理学和实验验证的覆盆子(Rubi fructus)治疗 2 型糖尿病的机制研究
IF 3 3区 生物学
Phytochemical Analysis Pub Date : 2024-11-04 DOI: 10.1002/pca.3464
Xiaoge Wang, Xueyan Zhang, Qiyuan Liao, Xuelin Rui, Rui Wang
{"title":"Study on the Mechanism of Raspberry (Rubi fructus) in Treating Type 2 Diabetes Based on UPLC-Q-Exactive Orbitrap MS, Network Pharmacology, and Experimental Validation.","authors":"Xiaoge Wang, Xueyan Zhang, Qiyuan Liao, Xuelin Rui, Rui Wang","doi":"10.1002/pca.3464","DOIUrl":"https://doi.org/10.1002/pca.3464","url":null,"abstract":"<p><strong>Aim: </strong>The aim of this study is to analyze the chemical composition of raspberry using liquid chromatography-mass spectrometry (LC-MS) technology, predict the potential effects of raspberry in treating type 2 diabetes through network pharmacology, and conduct preliminary validation through in vitro experiments.</p><p><strong>Methods: </strong>A Waters CORTECS C18 column (3.0 mm × 100 mm, 2.7 μm) was used; mobile phase A consisted of 0.1% formic acid in water and mobile phase B consisted of 0.1% formic acid in acetonitrile. Gradient elution was performed with full-scan mode in both positive and negative ion modes, covering a mass range of m/z 100-1500. The chemical components of raspberry were analyzed and identified based on secondary spectra from databases and relevant literature. The disease targets related to type 2 diabetes were searched, and protein-protein interaction network analysis as well as gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted on the intersecting targets of the active components of raspberry and the disease. HepG2 cells were used for experimental validation, with high glucose-induced insulin resistance models established. The CCK-8 method was employed to assess the effects of raspberry on cell proliferation, while Western blotting was used to measure the expression of proteins related to the AGE/RAGE signaling pathway.</p><p><strong>Results: </strong>A total of 47 components were identified, including 10 organic acids, 15 flavonoids, 12 phenols, 2 alkaloids, 4 terpenoids, 1 miscellaneous compound, 1 stilbene, 1 steroid and its derivatives, and 1 diterpenoid. Through database screening, seven active components were identified: kaempferol, epicatechin, ellagic acid, crocetin, stigmasterol, fisetin, and isorhamnetin. KEGG and GO results indicated that the therapeutic effects of raspberry on type 2 diabetes may be related to the advanced glycation end product (AGE)- receptor for advanced glycation end product (RAGE) signaling pathway. Establishment of an insulin resistance model in HepG2 cells demonstrated that, compared to the control group, the raspberry treatment group upregulated p53 protein expression while downregulating the expression of RAGE, Akt1, and Caspase-3 proteins.</p><p><strong>Conclusion: </strong>This study preliminarily elucidates that the therapeutic effects of raspberry in treating type 2 diabetes may be mediated through the inhibition of the AGE-RAGE signaling pathway, providing important references for the study of the pharmacological basis and clinical application of raspberry.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信