Hajar Salehi, Abdolkarim Chehregani Rad, Luigi Lucini
{"title":"Different Forms of Manganese Provide Distinctive Metabolomics Signatures and Bioactive Profiles in Artemisia annua.","authors":"Hajar Salehi, Abdolkarim Chehregani Rad, Luigi Lucini","doi":"10.1002/pca.3538","DOIUrl":"https://doi.org/10.1002/pca.3538","url":null,"abstract":"<p><strong>Introduction: </strong>Natural products are among the main ingredients of medicinal plants, and strategies that enhance their bioactive profile by elemental supplementation have emerged recently. Manganese is involved in various plant secondary metabolism pathways among different micronutrients.</p><p><strong>Objectives: </strong>This study investigated the effects of ionic (MnSO₄, MnCl₂), bulk (Mn₂O₃), and nano (Mn₂O₃-NP) manganese forms on Artemisia annua's secondary metabolism. It also studied the influence of the application method (seed priming vs. seed priming + foliar).</p><p><strong>Methods: </strong>For this purpose, untargeted UHPLC-QTOF-HRMS metabolomics was conducted.</p><p><strong>Results: </strong>The findings revealed that Mn form and application method significantly influenced the metabolomic profile and secondary metabolite composition of the leaves and inflorescences, regardless of tissue type. Metabolomic profiling using untargeted analysis and multivariate statistical tools (PCA, PLS-DA, and VIP scoring) showed significant variation in bioactive compound accumulation. Mn₂O₃ and MnCl₂ were most effective in enhancing nitrogen-containing compounds, phenylpropanoids, flavonoids, and terpenoids, possibly via ROS-mediated biosynthesis. Mn₂O₃ strongly increased lignans, while Mn₂O₃-NP showed the highest artemisinin accumulation (3.2-3.7 mg g<sup>-1</sup> FW) compared to MnCl₂ and Mn₂O₃ (0.2-1.7 mg g<sup>-1</sup> FW). Key pharmacological metabolites such as vincristine, Momilactone A, and terbinafine were identified by VIP2 analysis.</p><p><strong>Conclusion: </strong>Mn₂O₃-NP application through seed priming is a promising and cost-effective approach to modulate bioactive metabolite production in Artemisia annua.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144079508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioactive Apigenin-7-O-β-Glucoside and Rosmarinic Acid Molecules From Two Nepeta Species: Bioactivity-Guided Isolation, In Vitro Evaluations, Pharmacokinetic and In Silico Approaches as Metabolic Enzyme Inhibition Agents.","authors":"Mesut Gok, Yunus Basar, Semiha Yenigun, Yasar Ipek, Lutfi Behcet, Tevfik Ozen, Ibrahim Demirtas","doi":"10.1002/pca.3536","DOIUrl":"https://doi.org/10.1002/pca.3536","url":null,"abstract":"<p><strong>Introduction: </strong>In this study, apigenin-7-O-β-glucoside (AGL) was isolated from Nepeta nuda; also, rosmarinic acid (RA) was isolated from N. aristata and N. nuda.</p><p><strong>Objectives: </strong>The aim of this study is to investigate the enzyme inhibitory, DNA protective, and antibacterial effects of AGL and RA isolated from two Nepeta species.</p><p><strong>Material and methods: </strong>1D and 2D NMR spectra and an MS chromatogram were recorded to identify AGL and RA. The antibacterial and DNA protection activities, enzyme inhibition, and kinetics investigated of AGL and RA. Molecular interactions, molecular dynamics (MD) simulations, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations, density functional theory (DFT), molecular electrostatic potential (MEP) analyses, and prediction of activity spectra for substances (PASS) predictions for RA and AGL were investigated for the first time to evaluate the activity results.</p><p><strong>Results: </strong>In this context, the inhibitory properties of AGL were higher in urease, α-amylase, and tyrosinase, whereas RA has a higher inhibitory activity on lipase, CA, and urease. In addition, AGL and RA showed effective antimicrobial activity against Staphylococcus aureus, while it also was effective DNA and deoxyribose protective activities. The stability of the complex formed by lipase, CA, and urease with RA and by tyrosinase and α-amylase with AGL was determined by MD simulations, and the energy results of RA were evaluated by MM-PBSA analysis. The DFT, MEP analysis, and PASS prediction showed that AGL and RA have a soft structure and can easily exchange electrons.</p><p><strong>Conclusion: </strong>According to the results obtained from the current study, AGL and RA were explored as a drug model.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144042679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Pectic Polysaccharide From Stems and Leaves of Panacis Quinquefolii Radix: Preparation, Structural Characteristic, and Inhibition of Cardiac Hypertrophy.","authors":"Minghui Zhang, Yu Xu, Lei Zhang, Peipei Wang","doi":"10.1002/pca.3535","DOIUrl":"https://doi.org/10.1002/pca.3535","url":null,"abstract":"<p><strong>Introduction: </strong>Panacis Quinquefolii Radix, a valued herb in traditional Chinese medicine, is frequently prescribed for its immunomodulatory effects and its potential to improve cardiovascular function. Recently, there is an increasing amount of research on ginseng polysaccharides, due to their variety of pharmacological activities, including anti-inflammatory, hepatoprotective, cardiovascular protective, and the improvement of intestinal function.</p><p><strong>Objective: </strong>This study investigates the efficacy of Panacis Quinquefolii Radix polysaccharides in alleviating cardiovascular diseases and to achieve the high-value utilization of ginseng by-products.</p><p><strong>Methodology: </strong>A pectic polysaccharide named XYSJY2-2 was extracted with hot water from stems and leaves of Panacis Quinquefolii Radix and further isolated by a DEAE Sepharose Fast Flow column and a Sephacry S-100 column. The structural characteristics of XYSJY2-2 was determined by monosaccharide composition, IR, NMR, and methylation analysis. The cardioprotective activity of this polysaccharide was evaluated in vitro and in vivo. With a relative molecular weight of 5.1 kDa, XYSJY2-2 is a type I rhamnogalacturonan featuring a core backbone made up of alternately linked rhamnose and galacturonic acid.</p><p><strong>Results: </strong>XYSJY2-2 effectively alleviated myocardial hypertrophy and remodeling induced by Ang II and TAC in vivo and in vitro, partly due to suppressing Nppa and Nppb expression.</p><p><strong>Conclusion: </strong>A pectic polysaccharide from stems and leaves of Panacis Quinquefolii Radix has the potential to alleviate cardiovascular disease.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144064525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Ali, Shu-Rong Chen, Tsong-Long Hwang, Tsai-Hui Duh, Limbadri Salendra, Shah Iram Niaz, Pei-Wen Cheng, Yuan-Bin Cheng
{"title":"New Diterpenoids With Anti-Inflammatory Activity From Callicarpa rubella Collected in Vietnam.","authors":"Muhammad Ali, Shu-Rong Chen, Tsong-Long Hwang, Tsai-Hui Duh, Limbadri Salendra, Shah Iram Niaz, Pei-Wen Cheng, Yuan-Bin Cheng","doi":"10.1002/pca.3534","DOIUrl":"https://doi.org/10.1002/pca.3534","url":null,"abstract":"<p><strong>Introduction: </strong>Callicarpa rubella is a notable folk medicinal plant of the genus Callicarpa. It is extensively ethnobotanically used for its traditional uses to cure rheumatism, inflammation, and pain in traditional Chinese medicinal systems.</p><p><strong>Objectives: </strong>This study aimed to isolate unreported diterpenoids with anti-inflammatory activities.</p><p><strong>Material and methods: </strong>The planar structures of unreported compounds were characterized by interpreting 1D and 2D NMR spectra and HREIMS data. The absolute configurations were determined by comparing the experimental ECD spectra with calculated ECD ones. The potential anti-inflammatory activities of all isolated compounds were assessed by testing their in vitro inhibitory effects against superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB.</p><p><strong>Results: </strong>Investigation of chemical constituents from the leaves and twigs of C. rubella leads to the isolation of four unreported diterpenoids (1-4) along with 17 known diterpenoids (5-21). The results showed compounds 1, 3, 5-7, 9, 12, 16, 18, and 20 have potent inhibition against FMLP/CB-induced superoxide anion generation with IC<sub>50</sub> values range from 1.37 ± 0.09 μM to 6.29 ± 1.14 μM, while compounds 3, 6, 7, 9, 12, 16, 18, and 20 showed potent inhibition of elastase release with IC<sub>50</sub> ranging from 1.47 ± 0.15 μM to 5.79 ± 1.16 μM.</p><p><strong>Conclusion: </strong>The results obtained from the current study will enhance our understanding of diterpenoids from the Callicarpa genus and support the identification of unreported diterpenoids with potential anti-inflammatory agents.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144015652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeted Isolation of Coumarins From Sideritis Species Based on Antiviral Screening and Untargeted Metabolomics.","authors":"Ekaterina-Michaela Tomou, Olivier Engler, Antonios Chrysargyris, Nikolaos Tzortzakis, Helen Skaltsa, Corinna Urmann","doi":"10.1002/pca.3531","DOIUrl":"https://doi.org/10.1002/pca.3531","url":null,"abstract":"<p><strong>Introduction: </strong>The SARS-CoV-2 pandemic has revealed a deficiency in antiviral agents. Plants, traditionally used for respiratory infections, are valuable sources of antiviral compounds. Such a plant is the Sideritis L. taxa (mountain tea), traditionally used against cold and cough.</p><p><strong>Objectives: </strong>Accordingly, this study aimed to investigate the potential protective effects of dichloromethane extracts from Sideritis species against SARS-CoV-2.</p><p><strong>Materials and methods: </strong>Eight Sideritis extracts were tested in an in vitro pretreatment assay to assess the protective effect against SARS-CoV-2. Therefore, infectious virus particles were pre-incubated with the extract, then incubated with Vero E6 cells to finally measure cell viability as a surrogate for virus infection. Untargeted analyses (GC-MS and LC-PDA-HRESIMS) were performed to determine metabolite profiles.</p><p><strong>Results: </strong>Using an orthogonal approach that combines untargeted metabolomics and biological data from a screening assay, we characterized the phytochemical profiles of the different extracts and prioritized samples for targeted isolation. The dichloromethane extract of Sideritis cypria exhibited a notable protective effect. Untargeted analysis revealed coumarins as key compounds, with varying amounts across Sideritis species. Accordingly, fractionation of extract resulted in the isolation of two coumarin derivatives. Structure elucidation was performed using one- and two-dimensional nuclear magnetic resonance experiments. The coumarin, more abundant in S. cypria, demonstrated a slight protective effect in the SARS-CoV-2 pretreatment assay.</p><p><strong>Conclusion: </strong>This study highlights the antiviral effects of Sideritis taxa, although further investigations are necessary to clarify the full potential of the herb. Additionally, the methodology presented herein can serve as a valuable resource for future phytochemical investigations focused on coumarin content within Sideritis genus.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143788764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Increment of Ginsenoside Accumulation in Ginseng Rhizome Joints and the Prediction of the Growth Year.","authors":"Faquan Wang, Shengyuan Xiao","doi":"10.1002/pca.3533","DOIUrl":"https://doi.org/10.1002/pca.3533","url":null,"abstract":"<p><strong>Introduction: </strong>The growth year of ginseng is relevant to its quality and commercial value. Ginseng rhizome joint number increases by growth year. The relationship between the metabolite accumulation and the growth year of a rhizome remains unclear. Most forest-grown ginseng rhizomes can conveniently be separated into different joints and are suitable materials for investigating ginseng metabolite accumulation.</p><p><strong>Objectives: </strong>This work aims to elucidate how ginsenoside accumulates in the ginseng rhizome joint and if it is applicable for growth-year determination.</p><p><strong>Methods: </strong>Forest-grown Panax ginseng rhizomes were separated into different joints according to their growth scars; ginsenosides in each joint were then tested using high-performance liquid chromatography-tandem mass spectrometry. The age-related ginsenosides screening was performed using orthogonal partial least squares analysis (OPLS). Several ground-cultivated ginseng rhizomes have also been tested.</p><p><strong>Results: </strong>Ginsenoside contents in different joints of a rhizome increase with its growth year and reach their corresponding equilibriums in specific years. Notoginsenoside R3 and ginsenoside Rg1 were the most relevant to the growth year. They increase continuously from 0 to 8 years. Perhaps, the OPLS improved the linearity of the relationship between scores and ages. The predictions of the growth year of a rhizome joint using the OPLS models were accurate.</p><p><strong>Conclusion: </strong>Some ginsenosides increased in ginseng rhizome joints by their growth year. The OPLS score of a rhizome joint can be used to determine its growth year.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143788761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual Assay Validation of Rosmarinus officinalis Extract as an Inhibitor of SARS-CoV-2 Spike Protein: Combining Pseudovirus Testing, Yeast Two-Hybrid, and UPLC-Q Exactive Orbitrap-MS Profiling.","authors":"Yujing Huang, Rufeng Luo, Chenjing Tian, Duntao Zu, Jianni Yang, Wenlin Chen, Dingqiang Huang, Siyan Duan, Shunxin Yan, Yujia Yuan, Shengrong Li, Haibo Zhou, Fulong Lin, Qinghui He, Junxia Zheng","doi":"10.1002/pca.3467","DOIUrl":"10.1002/pca.3467","url":null,"abstract":"<p><strong>Introduction: </strong>This study evaluates the effectiveness of Traditional Chinese Medicine (TCM) extracts in blocking the interaction between the SARS-CoV-2 Spike protein and human ACE2 receptor, utilizing a dual-method approach to explore the antiviral potential of natural compounds.</p><p><strong>Objectives: </strong>This work aims to evaluate the capability of TCM extracts in inhibiting the SARS-CoV-2 Spike protein and ACE2 receptor interaction using advanced biochemical assays.</p><p><strong>Methods: </strong>A dual-method screening approach was utilized, beginning with a pseudovirus assay to assess the inhibition capabilities of TCM extracts in vitro, followed by a split-ubiquitin yeast two-hybrid (Y2H) system to validate interactions in live cells. Active compounds were characterized and quantified using UPLC-Q-Exactive-Orbitrap-MS.</p><p><strong>Results: </strong>Among the 91 TCM extracts tested, Rosmarinus officinalis exhibited the most potent inhibition in both pseudovirus and Y2H assays, significantly reducing viral entry and disrupting the Spike-ACE2 interaction. Comprehensive chemical profiling via UPLC-Q-Exactive-Orbitrap-MS identified 132 compounds, including phenolics, flavonoids, and terpenoids.</p><p><strong>Conclusion: </strong>This research validates the use of TCM extracts in viral inhibition strategies, demonstrating the utility of integrating traditional remedies with modern scientific approaches to discover new therapeutic agents.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":"776-792"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel Nordaucane Sesquiterpenoid and Sesquiterpene Lactone From Laserpitium Species: Isolation, Structure Elucidation, In Vitro, In Vivo, and In Silico Evaluation as Anticancer Agents.","authors":"Meltem Güleç, Halil Şenol, Nur Tan","doi":"10.1002/pca.3472","DOIUrl":"10.1002/pca.3472","url":null,"abstract":"<p><strong>Introduction: </strong>This study explores the cytotoxic activity-guided isolation of the underground parts of Laserpitium hispidum M. Bieb and Laserpitium petrophilum Boiss. & Heldr., which have not been previously investigated.</p><p><strong>Objectives: </strong>The aim is to isolate and evaluate bioactive compounds from Laserpitium L. species with anticancer potential.</p><p><strong>Material and methods: </strong>This study involves bioactivity-guided isolation and structural studies of the pure compounds utilizing NMR, UV-Vis, IR spectroscopies, and HRMS. The cytotoxic activity of the isolated compounds was evaluated in vitro and in vivo, whereas molecular modeling, docking, and ADME predictions were conducted using Schrödinger software.</p><p><strong>Results: </strong>The study isolated phenylpropanoids (laserine (1), latifolone (2), myristicin (3)), sterol (stigmasterol (4)), polyenes (falcarindiol (5)), sesquiterpene lactone (11-hydroxybadkhyzin (6)), and nordaucane sesquiterpene (norlasidiol angelate (7)) from L. hispidum, whereas L. petrophilum yielded 10β-acetoxy-8α-angeloyloxy-6αH,7αH-guaian-3-en-12,6-olide (8), 10β-acetoxy-8α-senecioyloxy-6αH,7αH-guaian-3-en-6,12-olide (9) and acetylisomontanolide (10). Molecular docking simulations revealed stable interactions between compounds 7 and 9 with estrogen receptor α (ERα) and vascular endothelial growth factor receptor 2 (VEGFR2), with compound 7 showing superior stability and binding affinity. In silico ADME predictions indicated favorable pharmacokinetic properties, including high oral absorption.</p><p><strong>Conclusion: </strong>Compounds 7 and 9, representing new nordaucane and sesquiterpene lactones, have not been previously reported. In vitro cytotoxicity revealed that compound 7 exhibits potent anti-cancer activity against MCF-7 cells, whereas compound 9 showed reduced cytotoxicity. In vivo testing in Caenorhabditis elegans supported these findings, suggesting safety and efficacy in organisms. In silico results emphasize the potential of these compounds, with compound 7 promising due to its stability and strong binding affinity.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":"846-865"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoge Wang, Xueyan Zhang, Qiyuan Liao, Xuelin Rui, Rui Wang
{"title":"Study on the Mechanism of Raspberry (Rubi fructus) in Treating Type 2 Diabetes Based on UPLC-Q-Exactive Orbitrap MS, Network Pharmacology, and Experimental Validation.","authors":"Xiaoge Wang, Xueyan Zhang, Qiyuan Liao, Xuelin Rui, Rui Wang","doi":"10.1002/pca.3464","DOIUrl":"10.1002/pca.3464","url":null,"abstract":"<p><strong>Aim: </strong>The aim of this study is to analyze the chemical composition of raspberry using liquid chromatography-mass spectrometry (LC-MS) technology, predict the potential effects of raspberry in treating type 2 diabetes through network pharmacology, and conduct preliminary validation through in vitro experiments.</p><p><strong>Methods: </strong>A Waters CORTECS C18 column (3.0 mm × 100 mm, 2.7 μm) was used; mobile phase A consisted of 0.1% formic acid in water and mobile phase B consisted of 0.1% formic acid in acetonitrile. Gradient elution was performed with full-scan mode in both positive and negative ion modes, covering a mass range of m/z 100-1500. The chemical components of raspberry were analyzed and identified based on secondary spectra from databases and relevant literature. The disease targets related to type 2 diabetes were searched, and protein-protein interaction network analysis as well as gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted on the intersecting targets of the active components of raspberry and the disease. HepG2 cells were used for experimental validation, with high glucose-induced insulin resistance models established. The CCK-8 method was employed to assess the effects of raspberry on cell proliferation, while Western blotting was used to measure the expression of proteins related to the AGE/RAGE signaling pathway.</p><p><strong>Results: </strong>A total of 47 components were identified, including 10 organic acids, 15 flavonoids, 12 phenols, 2 alkaloids, 4 terpenoids, 1 miscellaneous compound, 1 stilbene, 1 steroid and its derivatives, and 1 diterpenoid. Through database screening, seven active components were identified: kaempferol, epicatechin, ellagic acid, crocetin, stigmasterol, fisetin, and isorhamnetin. KEGG and GO results indicated that the therapeutic effects of raspberry on type 2 diabetes may be related to the advanced glycation end product (AGE)- receptor for advanced glycation end product (RAGE) signaling pathway. Establishment of an insulin resistance model in HepG2 cells demonstrated that, compared to the control group, the raspberry treatment group upregulated p53 protein expression while downregulating the expression of RAGE, Akt1, and Caspase-3 proteins.</p><p><strong>Conclusion: </strong>This study preliminarily elucidates that the therapeutic effects of raspberry in treating type 2 diabetes may be mediated through the inhibition of the AGE-RAGE signaling pathway, providing important references for the study of the pharmacological basis and clinical application of raspberry.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":"744-758"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"At-Line LC-QTOF-ESI-MS/MS Fractionation of Impatiens balsamina Linn. Coupled With a Simple DPPH for Rapid Identification and Guided Isolation of Antioxidant.","authors":"Jukkarin Srivilai, Nitra Nuengchamnong, Nantaka Khorana, Nakuntwalai Wisidsri, Suradwadee Thungmungmee, Patteera Aoonboontum, Krittanon Sasea, Piyakaset Suksathan, Tammanoon Rungsang, Kornkanok Ingkaninan, Lapatrada Mungmai","doi":"10.1002/pca.3461","DOIUrl":"10.1002/pca.3461","url":null,"abstract":"<p><strong>Introduction: </strong>Reactive oxygen species (ROS) and ultraviolet (UV) light are significant factors to impair skin disorders. Impatiens balsamina Linn. (IB), a traditional Chinese and Thai herbal medicine, has long been used to treat skin and nail diseases, potentially due to its radical-scavenging properties. However, specific antioxidant compounds in IB have not been well defined.</p><p><strong>Objective: </strong>This work aims to rapidly identify, target, and isolate antioxidant biomarkers in IB using at-line LC-ESI-QTOF-(MS/MS) coupled with a simple DPPH assay and comprehensively investigate the antioxidant activities of IB extract and isolated biomarker.</p><p><strong>Methodology: </strong>Following liquid chromatography (LC), the eluent of IB extract was split into two streams (9:1 ratio). The majority was fractionated for DPPH assay in 96-well plates, whereas 10% underwent chemical identification using ESI-QTOF-MS. Antioxidants in IB were identified, targeted, and promptly isolated through transfer from analytical LC to preparative HPLC. IB and the isolated biomarkers were evaluated for antioxidant effects using various antiradical assays and in suppressing ROS induced by UV in skin cells, keratinocytes, and fibroblasts.</p><p><strong>Results: </strong>Thirty-one chemical constituents were identified, with four tentatively identified as potent antioxidants. Kaempferol emerged as a potential antioxidant biomarker in IB, exhibiting superior antioxidant activity in various in vitro assays compared with positive controls. Both IB extract and kaempferol effectively reduced UVB-induced ROS in skin cells.</p><p><strong>Conclusion: </strong>This study represents the first comprehensive identification of antioxidants and chemical constituents in IB, pinpointing kaempferol as a key antioxidant biomarker. Its rapid identification using at-line techniques holds promise for advancing bioactive compound discovery in herbal medicine.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":"704-717"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}