Isolation of a Unique Monoterpene Diperoxy Dimer From Ziziphora clinopodioides subsp. bungeana Together With Triterpenes With Antidiabetic Properties.

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Milan Malaník, Jakub Treml, Renata Kubínová, Gabriela Vávrová, Michal Oravec, Jaromír Marek, Karlygash Zhaparkulova, Liliya Ibragimova, Tolkyn Bekezhanova, Aigerim Karaubayeva, Zuriyadda Sakipova, Karel Šmejkal
{"title":"Isolation of a Unique Monoterpene Diperoxy Dimer From Ziziphora clinopodioides subsp. bungeana Together With Triterpenes With Antidiabetic Properties.","authors":"Milan Malaník, Jakub Treml, Renata Kubínová, Gabriela Vávrová, Michal Oravec, Jaromír Marek, Karlygash Zhaparkulova, Liliya Ibragimova, Tolkyn Bekezhanova, Aigerim Karaubayeva, Zuriyadda Sakipova, Karel Šmejkal","doi":"10.1002/pca.3505","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Ziziphora clinopodioides subsp. bungeana (Juz.) Rech.f. is used in traditional medicine for various purposes. Previous phytochemical studies focused on phenolic compounds, but triterpenoids were almost overlooked.</p><p><strong>Objective: </strong>The study focused on the isolation of compounds with dual antidiabetic activity from the aerial parts of Z. clinopodioides subsp. bungeana.</p><p><strong>Materials and methods: </strong>Separation of CHCl<sub>3</sub>-soluble fraction by silica gel column chromatography using different mobile phases and purification of compounds by semi-preparative HPLC or preparative TLC. The structures of pure compounds were elucidated by 1D and 2D NMR experiments along with HRMS. Compound 1 was additionally identified by the single crystal X-ray diffraction method. α-Glucosidase inhibitory assay and GLUT4 expression and translocation in C2C12 myotubes were conducted to evaluate antidiabetic potential of isolated compounds.</p><p><strong>Results: </strong>This phytochemical study led to the isolation of 20 compounds, including a unique monoterpene diperoxy dimer (1). Compounds 7 and 9-11 displayed more potent α-glucosidase inhibitory activity (IC<sub>50</sub> 45.3-135.3 μM) than acarbose used as a positive control (IC<sub>50</sub> 264.7 μM), while only pomolic acid (5) increased GLUT4 translocation in C2C12 myotubes in a significant manner.</p><p><strong>Conclusion: </strong>Extensive chromatographic separation led to the isolation and identification of a unique monoterpene diperoxy dimer (1) from aerial parts of Z. clinopodioides subsp. bungeana. Some triterpenes inhibited α-glucosidase, another increased GLUT4 translocation. Although none of the isolated compounds demonstrated dual antidiabetic activity, selected triterpenes proved to be potent antidiabetic agents in vitro.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3505","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Ziziphora clinopodioides subsp. bungeana (Juz.) Rech.f. is used in traditional medicine for various purposes. Previous phytochemical studies focused on phenolic compounds, but triterpenoids were almost overlooked.

Objective: The study focused on the isolation of compounds with dual antidiabetic activity from the aerial parts of Z. clinopodioides subsp. bungeana.

Materials and methods: Separation of CHCl3-soluble fraction by silica gel column chromatography using different mobile phases and purification of compounds by semi-preparative HPLC or preparative TLC. The structures of pure compounds were elucidated by 1D and 2D NMR experiments along with HRMS. Compound 1 was additionally identified by the single crystal X-ray diffraction method. α-Glucosidase inhibitory assay and GLUT4 expression and translocation in C2C12 myotubes were conducted to evaluate antidiabetic potential of isolated compounds.

Results: This phytochemical study led to the isolation of 20 compounds, including a unique monoterpene diperoxy dimer (1). Compounds 7 and 9-11 displayed more potent α-glucosidase inhibitory activity (IC50 45.3-135.3 μM) than acarbose used as a positive control (IC50 264.7 μM), while only pomolic acid (5) increased GLUT4 translocation in C2C12 myotubes in a significant manner.

Conclusion: Extensive chromatographic separation led to the isolation and identification of a unique monoterpene diperoxy dimer (1) from aerial parts of Z. clinopodioides subsp. bungeana. Some triterpenes inhibited α-glucosidase, another increased GLUT4 translocation. Although none of the isolated compounds demonstrated dual antidiabetic activity, selected triterpenes proved to be potent antidiabetic agents in vitro.

一种独特的单萜二过氧二聚体的分离。白杨与三萜具有抗糖尿病的特性。
植物简介:紫茎草。样地(想你)。Rech.f。在传统医学中有多种用途。以前的植物化学研究主要集中在酚类化合物上,而三萜几乎被忽视了。目的:研究从山参地上部分离具有双重抗糖尿病活性的化合物。样地。材料与方法:采用不同流动相的硅胶柱层析分离chcl3可溶性组分,采用半制备型HPLC或制备型TLC对化合物进行纯化。纯化合物的结构通过一维、二维核磁共振实验和HRMS进行了表征。化合物1通过单晶x射线衍射法进一步鉴定。通过α-葡萄糖苷酶抑制实验和GLUT4在C2C12肌管中的表达和易位来评价分离化合物的降糖潜力。结果:该植物化学研究分离出20个化合物,其中包括一个独特的单萜二过氧二聚体(1)。化合物7和9-11的α-葡萄糖苷酶抑制活性(IC50为45.3-135.3 μM)高于作为阳性对照的阿卡波糖(IC50为264.7 μM),而只有酚酸(5)能显著增加C2C12肌管中GLUT4的易位。结论:通过广泛的色谱分离,分离鉴定出一种独特的单萜二过氧二聚体(1)。样地。一些三萜抑制α-葡萄糖苷酶,另一些增加GLUT4易位。虽然没有分离的化合物表现出双重抗糖尿病活性,但选定的三萜在体外被证明是有效的抗糖尿病药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytochemical Analysis
Phytochemical Analysis 生物-分析化学
CiteScore
6.00
自引率
6.10%
发文量
88
审稿时长
1.7 months
期刊介绍: Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信