Study on the Mechanism of Raspberry (Rubi fructus) in Treating Type 2 Diabetes Based on UPLC-Q-Exactive Orbitrap MS, Network Pharmacology, and Experimental Validation.
Xiaoge Wang, Xueyan Zhang, Qiyuan Liao, Xuelin Rui, Rui Wang
{"title":"Study on the Mechanism of Raspberry (Rubi fructus) in Treating Type 2 Diabetes Based on UPLC-Q-Exactive Orbitrap MS, Network Pharmacology, and Experimental Validation.","authors":"Xiaoge Wang, Xueyan Zhang, Qiyuan Liao, Xuelin Rui, Rui Wang","doi":"10.1002/pca.3464","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The aim of this study is to analyze the chemical composition of raspberry using liquid chromatography-mass spectrometry (LC-MS) technology, predict the potential effects of raspberry in treating type 2 diabetes through network pharmacology, and conduct preliminary validation through in vitro experiments.</p><p><strong>Methods: </strong>A Waters CORTECS C18 column (3.0 mm × 100 mm, 2.7 μm) was used; mobile phase A consisted of 0.1% formic acid in water and mobile phase B consisted of 0.1% formic acid in acetonitrile. Gradient elution was performed with full-scan mode in both positive and negative ion modes, covering a mass range of m/z 100-1500. The chemical components of raspberry were analyzed and identified based on secondary spectra from databases and relevant literature. The disease targets related to type 2 diabetes were searched, and protein-protein interaction network analysis as well as gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted on the intersecting targets of the active components of raspberry and the disease. HepG2 cells were used for experimental validation, with high glucose-induced insulin resistance models established. The CCK-8 method was employed to assess the effects of raspberry on cell proliferation, while Western blotting was used to measure the expression of proteins related to the AGE/RAGE signaling pathway.</p><p><strong>Results: </strong>A total of 47 components were identified, including 10 organic acids, 15 flavonoids, 12 phenols, 2 alkaloids, 4 terpenoids, 1 miscellaneous compound, 1 stilbene, 1 steroid and its derivatives, and 1 diterpenoid. Through database screening, seven active components were identified: kaempferol, epicatechin, ellagic acid, crocetin, stigmasterol, fisetin, and isorhamnetin. KEGG and GO results indicated that the therapeutic effects of raspberry on type 2 diabetes may be related to the advanced glycation end product (AGE)- receptor for advanced glycation end product (RAGE) signaling pathway. Establishment of an insulin resistance model in HepG2 cells demonstrated that, compared to the control group, the raspberry treatment group upregulated p53 protein expression while downregulating the expression of RAGE, Akt1, and Caspase-3 proteins.</p><p><strong>Conclusion: </strong>This study preliminarily elucidates that the therapeutic effects of raspberry in treating type 2 diabetes may be mediated through the inhibition of the AGE-RAGE signaling pathway, providing important references for the study of the pharmacological basis and clinical application of raspberry.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3464","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The aim of this study is to analyze the chemical composition of raspberry using liquid chromatography-mass spectrometry (LC-MS) technology, predict the potential effects of raspberry in treating type 2 diabetes through network pharmacology, and conduct preliminary validation through in vitro experiments.
Methods: A Waters CORTECS C18 column (3.0 mm × 100 mm, 2.7 μm) was used; mobile phase A consisted of 0.1% formic acid in water and mobile phase B consisted of 0.1% formic acid in acetonitrile. Gradient elution was performed with full-scan mode in both positive and negative ion modes, covering a mass range of m/z 100-1500. The chemical components of raspberry were analyzed and identified based on secondary spectra from databases and relevant literature. The disease targets related to type 2 diabetes were searched, and protein-protein interaction network analysis as well as gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted on the intersecting targets of the active components of raspberry and the disease. HepG2 cells were used for experimental validation, with high glucose-induced insulin resistance models established. The CCK-8 method was employed to assess the effects of raspberry on cell proliferation, while Western blotting was used to measure the expression of proteins related to the AGE/RAGE signaling pathway.
Results: A total of 47 components were identified, including 10 organic acids, 15 flavonoids, 12 phenols, 2 alkaloids, 4 terpenoids, 1 miscellaneous compound, 1 stilbene, 1 steroid and its derivatives, and 1 diterpenoid. Through database screening, seven active components were identified: kaempferol, epicatechin, ellagic acid, crocetin, stigmasterol, fisetin, and isorhamnetin. KEGG and GO results indicated that the therapeutic effects of raspberry on type 2 diabetes may be related to the advanced glycation end product (AGE)- receptor for advanced glycation end product (RAGE) signaling pathway. Establishment of an insulin resistance model in HepG2 cells demonstrated that, compared to the control group, the raspberry treatment group upregulated p53 protein expression while downregulating the expression of RAGE, Akt1, and Caspase-3 proteins.
Conclusion: This study preliminarily elucidates that the therapeutic effects of raspberry in treating type 2 diabetes may be mediated through the inhibition of the AGE-RAGE signaling pathway, providing important references for the study of the pharmacological basis and clinical application of raspberry.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.